A085447 a(n) = 6*a(n-1) + a(n-2), starting with a(0)=2 and a(1)=6.
2, 6, 38, 234, 1442, 8886, 54758, 337434, 2079362, 12813606, 78960998, 486579594, 2998438562, 18477210966, 113861704358, 701647437114, 4323746327042, 26644125399366, 164188498723238, 1011775117738794
Offset: 0
Examples
a(4) = 6*a(3)+a(2) = 6*234+38 = 1442.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- P. Bhadouria, D. Jhala, B. Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence L_{6,n}
- Tanya Khovanova, Recursive Sequences
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
- Index entries for linear recurrences with constant coefficients, signature (6,1).
Programs
-
Magma
I:=[2,6]; [n le 2 select I[n] else 6*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016
-
Mathematica
RecurrenceTable[{a[0] == 2, a[1] == 6, a[n] == 6 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *) LinearRecurrence[{6,1}, {2,6}, 30] (* G. C. Greubel, Nov 07 2018 *)
-
PARI
x='x+O('x^30); Vec(2*(1-3*x)/(1-6*x-x^2)) \\ G. C. Greubel, Nov 07 2018
Formula
O.g.f.: 2*(-1+3*x)/(-1+6*x+x^2). - R. J. Mathar, Dec 02 2007
a(n) = 2*A005667(n). - R. J. Mathar, Nov 10 2013
Extensions
Edited and extended by Henry Bottomley, Jul 13 2003
Comments