A085452 Triangle T(n,k) read by rows: T(n,k) = number of cycles of length 2k in the binary n-cube, for n >= 2, k = 2, 3, ..., 2^(n-1).
1, 6, 16, 6, 24, 128, 696, 2112, 5024, 5376, 1344, 80, 640, 6720, 68736, 591200, 4652160, 32146800, 185285120, 865894848, 3136412160, 8315531200, 14800412160, 15448366080, 7413471744, 906545760, 240, 2560, 39840, 698112, 12226560, 203258880, 3257746560
Offset: 2
Examples
Triangle begins: 1, 6, 16, 6, 24, 128, 696, 2112, 5024, 5376, 1344, 80, 640, 6720, 68736, 591200, 4652160, 32146800, 185285120, 865894848, 3136412160, 8315531200, 14800412160, 15448366080, 7413471744, 906545760, .... In terms of cycle polynomials: x^4 6*x^4 + 16*x^6 + 6*x^8 24*x^4 + 128*x^6 + 696*x^8 + 2112*x^10 + 5024*x^12 + 5376*x^14 + 1344*x^16 ...
References
- Initial terms computed by Daniele Degiorgi (danieled(AT)inf.ethz.ch).
Links
- Eric Weisstein's World of Mathematics, Cycle Polynomial
- Eric Weisstein's World of Mathematics, Hypercube Graph
Programs
-
Mathematica
Table[Table[Length[FindCycle[HypercubeGraph[n], {k}, All]], {k, 4, 2^n, 2}], {n, 4}] // Flatten (* Eric W. Weisstein, Mar 23 2020 *)
Extensions
Corrected by Andrew Weimholt, Nov 14 2009
Initial terms of T(6,k) from Eric W. Weisstein, Mar 23 2020
Comments