A085462 Number of 5-tuples (v1,v2,v3,v4,v5) of nonnegative integers less than n such that v1<=v4, v1<=v5, v2<=v4 and v3<=v4.
1, 14, 77, 273, 748, 1729, 3542, 6630, 11571, 19096, 30107, 45695, 67158, 96019, 134044, 183260, 245973, 324786, 422617, 542717, 688688, 864501, 1074514, 1323490, 1616615, 1959516, 2358279, 2819467, 3350138, 3957863, 4650744
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- J. M. Landsberg and L. Manivel, The sextonions and E7 1/2, Adv. Math. 201 (2006), 143-179. [Th. 7.1, case a=-2/3]
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[n*(n+1)*(2*n+1)*(3*n+1)*(3*n+2)/120: n in [0..50]]; // G. C. Greubel, Oct 07 2017
-
Mathematica
Rest[CoefficientList[Series[x*(1 + x)*(1 + 7*x + x^2)/(1 - x)^6, {x, 0, 50}], x]] (* or *) Table[n*(n+1)*(2*n+1)*(3*n+1)*(3*n+2)/120, {n,0,50}] (* G. C. Greubel, Oct 07 2017 *)
-
PARI
x='x+O('x^50); Vec(x*(1+x)*(1+7*x+x^2)/(1-x)^6) \\ G. C. Greubel, Oct 07 2017
Formula
a(n) = n + 12*binomial(n, 2) + 38*binomial(n, 3) + 45*binomial(n, 4) + 18*binomial(n, 5).
a(n) = n*(n+1)*(2*n+1)*(3*n+1)*(3*n+2)/120.
G.f.: x*(1+x)*(1+7*x+x^2)/(1-x)^6. - Colin Barker, Apr 01 2012
a(n) = sum(i=1..n, sum(j=1..n, i^2 * Min(i,j))). - Enrique Pérez Herrero, Jan 30 2013
Comments