A085464 Number of monotone n-weightings of complete bipartite digraph K(4,2).
1, 19, 134, 586, 1919, 5173, 12124, 25572, 49677, 90343, 155650, 256334, 406315, 623273, 929272, 1351432, 1922649, 2682363, 3677374, 4962706, 6602519, 8671069, 11253716, 14447980, 18364645, 23128911, 28881594, 35780374, 44001091
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
Programs
-
Magma
[(1/30)*n*(n+1)*(2*n^4+4*n^3+6*n^2+4*n-1): n in [1..25]]; // G. C. Greubel, Oct 07 2017
-
Mathematica
Table[(1/30)*n*(n+1)*(2*n^4+4*n^3+6*n^2+4*n-1), {n,1,50}] (* G. C. Greubel, Oct 07 2017 *)
-
PARI
a(n)=n*(n+1)*(2*n^4+4*n^3+6*n^2+4*n-1)/30 \\ Charles R Greathouse IV, Jan 16 2013
Formula
a(n) = n + 17*binomial(n, 2) + 80*binomial(n, 3) + 160*binomial(n, 4) + 144*binomial(n, 5) + 48*binomial(n, 6).
a(n) = (1/30)*n*(n+1)*(2*n^4+4*n^3+6*n^2+4*n-1).
a(n) = Sum_{i=1..n} ((n+1-i)^4-(n-i)^4)*i^2.
a(n) = Sum_{i=1..n} ((n+1-i)^2-(n-i)^2)*i^4.
More generally, number of monotone n-weightings of complete bipartite digraph K(s, t) is Sum_{i=1..n} ((n+1-i)^s-(n-i)^s)*i^t = Sum_{i=1..n} ((n+1-i)^t-(n-i)^t)*i^s.
G.f.: x*(1+x)^2*(1+10*x+x^2)/(1-x)^7. - Colin Barker, Apr 01 2012
a(n) = sum(i=1..n, sum (j=1..n, min(i,j)^4)). - Enrique Pérez Herrero, Jan 16 2013
Comments