cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085469 Decimal expansion of Madelung constant (negated) for NaCl structure.

Original entry on oeis.org

1, 7, 4, 7, 5, 6, 4, 5, 9, 4, 6, 3, 3, 1, 8, 2, 1, 9, 0, 6, 3, 6, 2, 1, 2, 0, 3, 5, 5, 4, 4, 3, 9, 7, 4, 0, 3, 4, 8, 5, 1, 6, 1, 4, 3, 6, 6, 2, 4, 7, 4, 1, 7, 5, 8, 1, 5, 2, 8, 2, 5, 3, 5, 0, 7, 6, 5, 0, 4, 0, 6, 2, 3, 5, 3, 2, 7, 6, 1, 1, 7, 9, 8, 9, 0, 7, 5, 8, 3, 6, 2, 6, 9, 4, 6, 0, 7, 8, 8, 9, 9, 3
Offset: 1

Views

Author

Eric W. Weisstein, Jul 01 2003

Keywords

Comments

This is the electrostatic potential at the origin produced by unit charges of sign (-1)^(i+j+k) at all nonzero lattice points (i,j,k).
The NaCl structure consists of two interpenetrating face-centered cubic lattices of ions with charges +1 and -1, together occupying all the sites of the simple cubic lattice. - Andrey Zabolotskiy, Oct 21 2019
Named after the German physicist Erwin Madelung (1881-1972). - Amiram Eldar, Apr 02 2022

Examples

			-1.7475645946331821906362120355443974034851614366247417581528253507...
		

References

  • Richard E. Crandall, Topics in Advanced Scientific Computation, Springer, Telos books, 1996, pages 73-79.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 76.
  • Sadri Hassani, Mathematical Methods Using Mathematica: For Students of Physics and Related Fields, Springer, NY, page 60.

Crossrefs

Cf. A004015, A005875, A108778 (continued fraction).

Programs

  • Mathematica
    RealDigits[ 12Pi*Sum[ Sech[Pi/2*Sqrt[(2j + 1)^2 + (2k + 1)^2]]^2, {j, 0, 40}, {k, 0, 40}], 10, 111][[1]] (* Robert G. Wilson v, Jul 12 2005 *)
    RealDigits[Quiet[12 Pi (Sech[Pi/Sqrt[2]]^2 + NSum[Sum[Sech[Pi Norm[2 v + 1]/2]^2, {v, FrobeniusSolve[{1, 1}, Round[m]]}, Method -> "Procedural"], {m, 1, Infinity}, Compiled -> False, Method -> "WynnEpsilon", NSumTerms -> 33, WorkingPrecision -> 100])]][[1]] (* Jan Mangaldan, Jun 25 2020 *)
    digits = 1800; m0 = 800; dm = 10; dd = 10; Clear[f, g];
    g[j_, k_] := g[j, k] = 12 Pi Sech[(Pi/2) Sqrt[(2j + 1)^2 + (2k + 1)^2]]^2 // N[#, digits + dd]&;
    f[m_] := f[m] =  Sum[g[j, k], {j, 0, m}, {k, 0, m}];
    f[m = m0]; f[m += dm];
    While[Abs[f[m] - f[m - dm]] > 10^(-digits - dd), Print[m]; m += dm];
    A085469 = f[m];
    RealDigits[A085469, 10, digits][[1]] (* Jean-François Alcover, May 08 2021, after Robert G. Wilson v *)
  • PARI
    Madelung()=my(c=Pi/2,d=asech(2^-default(realbitprecision))\/c+1); sum(j=0,d, sum(k=0,d, sech(c*sqrt((2*j+1)^2+(2*k+1)^2))),0.)*12*Pi \\ Charles R Greathouse IV, Feb 07 2025

Formula

Sum_{i, j, k not all 0} (-1)^(i+j+k)/sqrt(i^2+j^2+k^2).

Extensions

Entry revised by N. J. A. Sloane, Apr 12 2004
Definition corrected by Leslie Glasser, Jan 24 2011
Definition corrected by Andrey Zabolotskiy, Oct 21 2019