A085489 a(n) is the number of subsets of {1,...,n} containing no solutions to x+y=z with x and y distinct (one version of "sum-free subsets").
1, 2, 4, 7, 13, 22, 37, 61, 102, 162, 261, 410, 646, 1001, 1553, 2370, 3645, 5515, 8303, 12470, 18713, 27811, 41244, 60962, 89733, 131870, 192522, 281125, 408680, 593880, 855661, 1238592, 1779614, 2563476, 3660084, 5255913, 7473380, 10696444, 15137517
Offset: 0
Examples
From _Gus Wiseman_, Jun 07 2019: (Start) The a(0) = 1 through a(4) = 13 subsets: {} {} {} {} {} {1} {1} {1} {1} {2} {2} {2} {1,2} {3} {3} {1,2} {4} {1,3} {1,2} {2,3} {1,3} {1,4} {2,3} {2,4} {3,4} {1,2,4} {2,3,4} The a(5) = 22 subsets: {} {1} {1,2} {1,2,4} {2} {1,3} {1,2,5} {3} {1,4} {1,3,5} {4} {1,5} {2,3,4} {5} {2,3} {2,4,5} {2,4} {3,4,5} {2,5} {3,4} {3,5} {4,5} (End)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..75, (terms up to a(57) from Ben Burns)
- Eric Weisstein's World of Mathematics, Sum-Free Set [Strictly speaking this link is not relevant, since it uses a different definition of "sum-free".]
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],Intersection[ #,Select[ Plus@@@ Subsets[ #,{2}],#<=n&]]=={}&]],{n,0,10}] (* Gus Wiseman, Jun 07 2019 *)
Formula
a(n) = 2^n - A088809(n). - Reinhard Zumkeller, Oct 19 2003
Extensions
More terms from Reinhard Zumkeller, Jul 13 2003
Edited by David Wasserman, Apr 16 2008
a(0) = 1 prepended by Gus Wiseman, Jun 07 2019
Comments