A085548 Decimal expansion of the prime zeta function at 2: Sum_{p prime} 1/p^2.
4, 5, 2, 2, 4, 7, 4, 2, 0, 0, 4, 1, 0, 6, 5, 4, 9, 8, 5, 0, 6, 5, 4, 3, 3, 6, 4, 8, 3, 2, 2, 4, 7, 9, 3, 4, 1, 7, 3, 2, 3, 1, 3, 4, 3, 2, 3, 9, 8, 9, 2, 4, 2, 1, 7, 3, 6, 4, 1, 8, 9, 3, 0, 3, 5, 1, 1, 6, 5, 0, 2, 7, 3, 6, 3, 9, 1, 0, 8, 7, 4, 4, 4, 8, 9, 5, 7, 5, 4, 4, 3, 5, 4, 9, 0, 6, 8, 5, 8, 2, 2, 2, 8, 0, 6
Offset: 0
Examples
0.4522474200410654985065... = 1/2^2 + 1/3^2 + 1/5^2 +1/7^2 + 1/11^2 + 1/13^2 + ...
References
- Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 94-98.
Links
- Jason Kimberley, Table of n, a(n) for n = 0..1093
- Henri Cohen, High Precision Computation of Hardy-Littlewood Constants, Preprint, 1998.
- Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission]
- Persi Diaconis, Frederick Mosteller, and Hironari Onishi, Second-order terms for the variances and covariances of the number of prime factors-including the square free case, J. Number Theory 9 (1977), no. 2, 187--202. MR0434991 (55 #7953).
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 171 and 190.
- J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.
- Xavier Gourdon and Pascal Sebah, Some Constants from Number theory.
- Lajos Hajdu and Rob Tijdeman, Integers represented by Lucas sequences, arXiv:2408.04982 [math.NT], 2024. See p. 16.
- Shanta Laishram and Florian Luca, Rectangles Of Nonvisible Lattice Points, J. Int. Seq. 18 (2015), Article 15.10.8, Theorem 1.
- Jon Lee, Joseph Paat, Ingo Stallknecht, and Luze Xu, Polynomial upper bounds on the number of differing columns of Delta-modular integer programs, arXiv:2105.08160 [math.OC], 2021, see page 23.
- R. J. Mathar, Series of reciprocal powers of k-almost primes, arXiv:0803.0900 [math.NT], 2008-2009. Table 1.
- Gerhard Niklasch and Pieter Moree, Some number-theoretical constants. [Cached copy]
- Michael Ian Shamos, Property Enumerators and a Partial Sum Theorem, 2011; alternative link.
- Hanson Smith, Ramification in the Division Fields of Elliptic Curves and an Application to Sporadic Points on Modular Curves, arXiv:1810.04809 [math.NT], 2018.
- Hanson Smith, Ramification in Division Fields and Sporadic Points on Modular Curves, U. Conn. (2020).
- Eric Weisstein's World of Mathematics, Distinct Prime Factors.
- Eric Weisstein's World of Mathematics, Prime Sums.
- Eric Weisstein's World of Mathematics, Prime Zeta Function.
- Wikipedia, Prime Zeta Function.
- Index to constants which are prime zeta sums {2,0,0}
Crossrefs
Programs
-
Magma
R := RealField(106); PrimeZeta := func
; Reverse(IntegerToSequence(Floor(PrimeZeta(2,173)*10^105))); // Jason Kimberley, Dec 30 2016 -
Mathematica
RealDigits[PrimeZetaP[2], 10, 105][[1]] (* Jean-François Alcover, Jun 24 2011, updated May 06 2021 *)
-
PARI
recip2(n) = { v=0; p=1; forprime(y=2,n, v=v+1./y^2; ); print(v) }
-
PARI
eps()=my(p=default(realprecision)); precision(2.>>(32*ceil(p*38539962/371253907)),9) lm=lambertw(log(4)/eps())\log(4); sum(k=1,lm, moebius(k)/k*log(abs(zeta(2*k)))) \\ Charles R Greathouse IV, Jul 19 2013
-
PARI
sumeulerrat(1/p,2) \\ Hugo Pfoertner, Feb 03 2020
Formula
P(2) = Sum_{p prime} 1/p^2 = Sum_{n>=1} mobius(n)*log(zeta(2*n))/n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Equals Sum_{k>=1} 1/A001248(k). - Amiram Eldar, Jul 27 2020
Equals Sum_{k>=2} pi(k)*(2*k+1)/(k^2*(k+1)^2), where pi(k) = A000720(k) (Shamos, 2011, p. 9). - Amiram Eldar, Mar 12 2024
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Offset corrected by R. J. Mathar, Feb 05 2009
Comments