A085576 Array read by antidiagonals: T(n,k) = size of maximal subset of nodes in n X k grid such that there at least 3 edges between any pair of nodes (n >= 1, k >= 1).
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 4, 5, 6, 6, 6, 5, 4, 3, 4, 5, 6, 6, 7, 7, 6, 6, 5, 4, 4, 5, 6, 8, 8, 8, 8, 8, 6, 5, 4, 4, 6, 7, 8, 9, 9, 9, 9, 8, 7, 6, 4
Offset: 1
Examples
Array begins 1 1 1 2 2 2 3 3 3 4 ... 1 1 2 2 3 3 4 4 5 5 ... 1 2 2 3 4 4 5 6 6 7 ... 2 2 3 4 5 6 6 8 8 9 ... For example, T(3,4) = 3 (*'s indicate the chosen nodes): o--*--o--o |..|..|..| o--o--o--o |..|..|..| *--o--o--*
Crossrefs
Main diagonal gives A085577.
Formula
T(n, 1) = floor((n+2)/3), T(n, 2) = floor((n+1)/2).
Comments