A085607 Non-palindromic n and its digit reversal have the same sum of prime factors (with repetition).
45, 54, 250, 495, 594, 1131, 1311, 2262, 2550, 2622, 2750, 2926, 3393, 3933, 4154, 4489, 4514, 4545, 4636, 4995, 5454, 5808, 5994, 6292, 6364, 6550, 7800, 8085, 8749, 9478, 9844, 12441, 13980, 14269, 14421, 15167, 15180, 15602, 16237, 18449, 18977
Offset: 1
Examples
a(3)=250 because 250 = 2*5^3 and 52 = 2^2*13 and 2+5+5+5 = 2+2+13 = 17.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
spf[n_]:=Total[Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]]; spffQ[ n_]:=!PalindromeQ[n]&&spf[n]==spf[IntegerReverse[n]]; Select[Range[ 20000], spffQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 19 2017 *)
Extensions
Corrected by T. D. Noe, Oct 25 2006