cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085609 Decimal expansion of Sum{p prime>=2} log(p)/(p^2-p+1).

Original entry on oeis.org

6, 0, 8, 3, 8, 1, 7, 1, 7, 8, 6, 3, 3, 2, 4, 7, 2, 2, 6, 8, 3, 8, 3, 4, 5, 8, 5, 8, 1, 5, 6, 2, 0, 1, 8, 7, 7, 5, 9, 1, 4, 8, 5, 9, 8, 2, 2, 6, 0, 2, 2, 5, 2, 1, 1, 9, 9, 5, 7, 3, 0, 8, 1, 5, 5, 2, 1, 7, 9, 7, 3, 1, 6, 6, 2, 1, 0, 7, 3, 9, 9, 5, 1, 5, 3, 4, 1, 7, 1, 3, 6, 8, 9, 7, 6, 6, 3, 1, 6, 8, 5, 6, 7, 4, 2
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Comments

Appears in the asymptotic formula for Sum{k=1..n} 1/phi(k), with phi(k) being Euler's totient function. - Stanislav Sykora, Nov 14 2014

Examples

			0.60838171786332472...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.7 Euler totient constants, p. 116.

Crossrefs

Programs

  • Mathematica
    digits = 105; m0 = 100; dm = 100; Clear[s]; s[n_] := s[n] = Sum[ Switch[ Mod[k, 6], 0, 1, 1, 0, 2, -1, 3, -1, 4, 0, 5, 1] * PrimeZetaP'[k], {k, 2, n}] // N[#, digits+40]&; Print[m0, " ", s[m0]]; s[m = m0+dm]; While[ Print[m, " ", s[m]]; RealDigits[s[m], 10, digits+5] != RealDigits[s[m-dm], 10, digits+5], m = m+dm]; RealDigits[s[m], 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)

Formula

Equals lim_{n->infinity} (Gamma + log(n) - c*Sum_{k=1..n} 1/phi(k)), where Gamma is the Euler-Mascheroni constant, and c = zeta(6)/(zeta(2)*zeta(3)) = 1/A082695. This equals further lim_{n->infinity} Sum{k=1..n} (1/k - c/phi(k)) and lim_{n->infinity}(A001008(n)/A002805(n) - (A028415(n)/A048049(n))/A082695). - Stanislav Sykora, Nov 15 2014

Extensions

More terms from Benoit Cloitre, Mar 06 2013
More digits from Jean-François Alcover, Sep 11 2015