cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A028415 Numerator of Sum_{k=1..n} 1/phi(k).

Original entry on oeis.org

1, 2, 5, 3, 13, 15, 47, 25, 13, 55, 281, 74, 301, 311, 637, 163, 1319, 453, 4117, 4207, 4267, 4339, 48089, 49079, 9895, 10027, 10115, 10247, 72125, 73511, 369403, 93217, 9391, 75821, 76283, 77207, 77515, 78131, 78593, 39643, 49727, 100609, 100939, 25408, 204419
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Examples

			1, 2, 5/2, 3, 13/4, 15/4, 47/12, 25/6, 13/3, 55/12, 281/60, 74/15, ...
		

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section I.27, page 29.

Crossrefs

Cf. A000010, A048049 (denominators).

Programs

  • Maple
    map(numer, ListTools:-PartialSums(map(1/numtheory:-phi, [$1..10000]))); # Robert Israel, Apr 16 2019
  • Mathematica
    Numerator[Table[Sum[1/EulerPhi[k],{k,n}],{n,50}]] (* Harvey P. Dale, Aug 24 2012 *)
  • PARI
    a(n) = numerator(sum(k=1, n, 1/eulerphi(k))); \\ Michel Marcus, Sep 18 2022

Formula

a(n)/A048049(n) = c * (log(n) + gamma - s) + O(log(n)^(2/3)/n), where c = zeta(2)*zeta(3)/zeta(6) (A082695), gamma is Euler's constant (A001620), and s = Sum_{p prime} log(p)/(p^2-p+1) (A085609) (Sitaramachandrarao, 1985). - Amiram Eldar, Sep 18 2022

A306072 Decimal expansion of 2 * Sum_{p prime}(p^2-p-1)*log(p)/(p^4+2*p^3+1).

Original entry on oeis.org

4, 0, 5, 2, 3, 7, 0, 3, 1, 4, 4, 4, 2, 2, 3, 9, 2, 5, 0, 8, 5, 9, 6, 5, 0, 9, 9, 1, 1, 2, 1, 8, 5, 2, 3, 4, 1, 0, 4, 4, 1, 4, 1, 7, 2, 4, 0, 4, 1, 9, 8, 4, 9, 2, 6, 2, 3, 4, 6, 3, 6, 2, 9, 7, 7, 5, 3, 7, 9, 8, 9, 0, 1, 8, 1, 8, 6, 4, 0, 3, 8, 0, 4, 8, 7, 4, 2, 6, 4, 6, 6, 4, 3, 9, 3, 6, 8, 4, 0, 6, 3, 7, 7, 7, 8, 4
Offset: 0

Views

Author

Amiram Eldar, Jun 19 2018

Keywords

Comments

The constant B that appears in the asymptotic formula for the sum of the bi-unitary divisor function (A306069).

Examples

			0.405237031444223925085965099112185234104414172404198492623463629775379...
		

Crossrefs

Programs

  • Mathematica
    cc = CoefficientList[Series[(p^2 - p - 1)/(p^4 + 2*p^3 + 1) /. p -> 1/x, {x, 0, 30}], x]; f = FindSequenceFunction[cc]; digits = 20; B = 2 NSum[f[n + 1 // Round]*(-PrimeZetaP'[n]), {n, 2, Infinity}, Method -> "AlternatingSigns", NSumTerms -> 10 digits, WorkingPrecision -> 5 digits]; RealDigits[B, 10, digits][[1]] (* Jean-François Alcover, Jun 19 2018 *)
    ratfun = 2*(p^2 - p - 1)/(p^4 + 2*p^3 + 1); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 20}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 100]], {m, 2000, 20000, 2000}] (* Vaclav Kotesovec, Jun 17 2020 *)

Extensions

a(1)-a(20) from Jean-François Alcover, Jun 19 2018
More digits from Vaclav Kotesovec, Jun 17 2020

A335707 Decimal expansion of Sum_{primes p} log(p) / (p^2 + p - 1).

Original entry on oeis.org

4, 1, 8, 7, 5, 7, 5, 7, 8, 7, 9, 4, 1, 2, 5, 4, 8, 0, 5, 3, 4, 4, 2, 1, 2, 5, 6, 0, 2, 8, 7, 0, 4, 6, 3, 6, 1, 3, 6, 5, 5, 5, 1, 6, 5, 4, 4, 9, 2, 8, 7, 0, 2, 9, 4, 0, 5, 2, 2, 0, 0, 2, 8, 0, 3, 7, 7, 5, 4, 9, 6, 9, 2, 5, 9, 5, 2, 8, 9, 0, 8, 0, 2, 1, 4, 8, 0, 6, 7, 2, 8, 4, 7, 7, 8, 5, 1, 1, 8, 8, 8, 5, 9, 4, 0, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 18 2020

Keywords

Examples

			0.41875757879412548053442125602870463613655516544928702940522...
		

Crossrefs

Programs

  • Mathematica
    ratfun = 1 / (p^2 + p - 1); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 20}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 100]], {m, 2000, 20000, 2000}]

A211177 Numerator of Sum_{k=1..n}(-1)^k/phi(k), where phi = A000010.

Original entry on oeis.org

-1, 0, -1, 0, -1, 1, 1, 1, 1, 5, 19, 17, 29, 13, 21, 13, 47, 181, 503, 593, 533, 121, 1259, 1457, 6889, 7549, 7109, 7769, 52403, 59333, 11497, 6095, 29089, 61643, 59333, 63953, 62413, 7277, 21061, 2777, 10877, 11647, 3809, 3963, 1438, 271, 3064, 51439, 7217, 7493
Offset: 1

Views

Author

Benoit Cloitre, Feb 01 2013

Keywords

Examples

			Fractions begin with -1, 0, -1/2, 0, -1/4, 1/4, 1/12, 1/3, 1/6, 5/12, 19/60, 17/30, ...
		

Crossrefs

Cf. A000010, A028415, A211178 (denominators).

Programs

  • Mathematica
    Numerator @ Accumulate[Table[(-1)^k/EulerPhi[k], {k, 1, 50}]] (* Amiram Eldar, Nov 20 2020 *)
  • PARI
    a(n)=numerator(sum(k=1,n,(-1)^k/eulerphi(k)))

Formula

a(n)/A211178(n) = c*log(n) + O(1) with a suitable constant c (see ref).
The constant above is c = zeta(2)*zeta(3)/(3*zeta(6)) = (1/3) * A082695. - Amiram Eldar, Nov 20 2020
More accurately, a(n)/A211178(n) ~ (A/3) * (log(n) + gamma - B - 8*log(2)/3) + O(log(n)^(5/3)/n), where A = zeta(2)*zeta(3)/zeta(6) (A082695), gamma is Euler's constant (A001620), and B = Sum_{p prime} log(p)/(p^2-p+1) (A085609) (Bordellès and Cloitre, 2013; Tóth, 2017). - Amiram Eldar, Oct 14 2022

Extensions

More terms from Amiram Eldar, Nov 20 2020

A345364 Decimal expansion of Sum_{p primes} p * (log(p))^2 / (p-1)^3.

Original entry on oeis.org

2, 0, 9, 1, 4, 8, 0, 2, 8, 2, 3, 4, 8, 9, 0, 1, 8, 5, 7, 3, 3, 8, 4, 0, 3, 6, 6, 4, 8, 0, 8, 6, 0, 5, 3, 4, 0, 1, 5, 4, 6, 3, 2, 2, 6, 1, 2, 3, 2, 4, 1, 8, 4, 2, 9, 9, 4, 0, 9, 1, 3, 5, 3, 2, 2, 2, 5, 6, 7, 2, 6, 4, 5, 3, 1, 1, 3, 5, 1, 4, 3, 6, 7, 6, 2, 6, 1, 8, 5, 4, 3, 4, 4, 5, 1, 4, 6, 9, 8, 9, 8, 7, 1, 5, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 16 2021

Keywords

Examples

			2.0914802823489018573384036648086053401546322612324184299409135322256726453113...
		

Crossrefs

Programs

  • Mathematica
    ratfun = p/(p - 1)^3; zetas = 0; ratab = Table[konfun = Together[Simplify[ratfun - c*(p^power/(p^power - 1)^2)]]; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*(-Zeta'[power]^2 / Zeta[power]^2 + Zeta''[power] / Zeta[power]) /. sol; ratfun = konfun /. sol, {power, 2, 30}]; Do[Print[N[Sum[Log[p]^2*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 110]], {m, 100, 1000, 100}]

A074467 Least k such that Sum_{i=1..k} 1/phi(i) >= n.

Original entry on oeis.org

1, 2, 4, 8, 13, 22, 38, 63, 105, 177, 296, 495, 828, 1386, 2318, 3879, 6489, 10854, 18158, 30375, 50811, 84998, 142187, 237853, 397885, 665589, 1113411, 1862534, 3115683, 5211973, 8718687, 14584783, 24397699, 40812930, 68272636, 114207749, 191048868, 319590137
Offset: 1

Views

Author

Labos Elemer, Aug 29 2002

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 177, p. 55, Ellipses, Paris 2008.
  • E. Landau, Uber die Zahlentheoretische Function ϕ(n) und ihre Beziehung zum Goldbachschen satz, Nachrichten der Koniglichten Gesel lschaft der Wissenschaften zu Göttingen mathematisch Physikalische klasse, Jahrgang (1900), pp. 177-186.

Crossrefs

Programs

  • Mathematica
    {s=0, s1=0}; Do[s=s+(1/EulerPhi[n]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]
  • PARI
    a(n)=my(s,k);while(sCharles R Greathouse IV, Jan 29 2013

Formula

a(n) ~ k exp(cn) for c = zeta(6)/zeta(2)/zeta(3) = A068468 and k = exp(-gamma + A085609) = 1.0316567993311528...; see Montgomery or Koninck. - Charles R Greathouse IV, Jan 29 2013

Extensions

More terms from Ryan Propper, Jul 09 2005
a(32)-a(38) from Donovan Johnson, Aug 21 2011

A098468 Decimal expansion of constant A*B in the asymptotic expression of the summatory function Sum_{n=1..N} (1/phi(n)) as A(log(N)+B) + O(log(N)/N).

Original entry on oeis.org

0, 6, 0, 5, 7, 4, 2, 2, 9, 4, 8, 6, 3, 0, 5, 7, 3, 2, 1, 6, 0, 9, 7, 4, 4, 0, 1, 1, 6, 6, 3, 1, 3, 8, 4, 0, 3, 5, 4, 9, 7, 2, 2, 8, 4, 0, 8, 8, 2, 9, 8, 9, 2, 8, 1, 1, 5, 1, 2, 2, 4, 4, 8, 5, 6, 0, 9, 3, 4, 9, 8, 5, 5, 9, 0, 1, 8, 6, 4, 9, 1, 3, 1, 2, 3, 9, 2, 9, 8, 1, 5
Offset: 0

Views

Author

Eric W. Weisstein, Sep 09 2004

Keywords

Comments

B equals EulerGamma - A085609.

Examples

			B = -0.0605742294.../A, where A is A082695.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.7 Euler totient constants, p. 116.

Crossrefs

Programs

  • Mathematica
    (* Using S. Finch's notation *)
    digits = 102;
    A = Zeta[2]*Zeta[3]/Zeta[6];
    S = Sum[Switch[Mod[k, 6], 0, 1, 1, 0, 2, -1, 3, -1, 4, 0, 5, 1]*PrimeZetaP'[k], {k, 2, 400}] // N[#, digits+40]&;
    B = EulerGamma - S;
    AB = A*B;
    Join[{0}, RealDigits[AB, 10, digits][[1]]] (* Jean-François Alcover, Apr 28 2018 *)

Formula

Sum_{n=1..N} 1/phi(n) = A*(log(N)+B) + O(log(N)/N). - Jean-François Alcover, Apr 28 2018

Extensions

More digits with the aid of A085609 and A082695 from R. J. Mathar, Jul 28 2010
More digits with the aid of A085609 and A082695 from Vaclav Kotesovec, Feb 17 2015

A373863 Decimal expansion of Sum_{k>=1} log(k)/(k^2-k+1).

Original entry on oeis.org

1, 0, 9, 8, 1, 0, 6, 7, 9, 1, 7, 5, 4, 4, 2, 2, 2, 0, 6, 9, 5, 1, 7, 6, 6, 5, 5, 3, 9, 6, 9, 7, 7, 9, 4, 9, 7, 0, 7, 2, 4, 7, 4, 5, 3, 6, 9, 7, 9, 6, 4, 4, 3, 6, 9, 5, 3, 7, 8, 2, 0, 9, 6, 9, 7, 7, 8, 6, 6, 6, 0, 4, 3, 7, 8, 3, 8, 4, 2, 4, 8, 3, 0, 1, 3, 0, 9, 2
Offset: 1

Views

Author

R. J. Mathar, Jun 19 2024

Keywords

Examples

			1.0981067917544222069517...
		

Crossrefs

Programs

  • Maple
    g := (1-e+e^2)^(-1) ;
    x :=0.0 ;
    for i from 0 to 350 do
        coeftayl(g,e=0,i) ;
        x-%*Zeta(1,2+i) ;
        x := evalf(%) ;
        print(%) ;
    end do:
  • PARI
    default(realprecision, 200); sumpos(k=1, log(k+1)/(k^2+k+1)) \\ Vaclav Kotesovec, Jun 28 2024

Formula

Equals Sum_{k>=1} log(k+1)/(k^2+k+1).
Showing 1-8 of 8 results.