cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000010 Euler totient function phi(n): count numbers <= n and prime to n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44
Offset: 1

Views

Author

Keywords

Comments

Number of elements in a reduced residue system modulo n.
Degree of the n-th cyclotomic polynomial (cf. A013595). - Benoit Cloitre, Oct 12 2002
Number of distinct generators of a cyclic group of order n. Number of primitive n-th roots of unity. (A primitive n-th root x is such that x^k is not equal to 1 for k = 1, 2, ..., n - 1, but x^n = 1.) - Lekraj Beedassy, Mar 31 2005
Also number of complex Dirichlet characters modulo n; Sum_{k=1..n} a(k) is asymptotic to (3/Pi^2)*n^2. - Steven Finch, Feb 16 2006
a(n) is the highest degree of irreducible polynomial dividing 1 + x + x^2 + ... + x^(n-1) = (x^n - 1)/(x - 1). - Alexander Adamchuk, Sep 02 2006, corrected Sep 27 2006
a(p) = p - 1 for prime p. a(n) is even for n > 2. For n > 2, a(n)/2 = A023022(n) = number of partitions of n into 2 ordered relatively prime parts. - Alexander Adamchuk, Jan 25 2007
Number of automorphisms of the cyclic group of order n. - Benoit Jubin, Aug 09 2008
a(n+2) equals the number of palindromic Sturmian words of length n which are "bispecial", prefix or suffix of two Sturmian words of length n + 1. - Fred Lunnon, Sep 05 2010
Suppose that a and n are coprime positive integers, then by Euler's totient theorem, any factor of n divides a^phi(n) - 1. - Lei Zhou, Feb 28 2012
If m has k prime factors, (p_1, p_2, ..., p_k), then phi(m*n) = (Product_{i=1..k} phi (p_i*n))/phi(n)^(k-1). For example, phi(42*n) = phi(2*n)*phi(3*n)*phi(7*n)/phi(n)^2. - Gary Detlefs, Apr 21 2012
Sum_{n>=1} a(n)/n! = 1.954085357876006213144... This sum is referenced in Plouffe's inverter. - Alexander R. Povolotsky, Feb 02 2013 (see A336334. - Hugo Pfoertner, Jul 22 2020)
The order of the multiplicative group of units modulo n. - Michael Somos, Aug 27 2013
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Dec 30 2016
From Eric Desbiaux, Jan 01 2017: (Start)
a(n) equals the Ramanujan sum c_n(n) (last term on n-th row of triangle A054533).
a(n) equals the Jordan function J_1(n) (cf. A007434, A059376, A059377, which are the Jordan functions J_2, J_3, J_4, respectively). (End)
For n > 1, a(n) appears to be equal to the number of semi-meander solutions for n with top arches containing exactly 2 mountain ranges and exactly 2 arches of length 1. - Roger Ford, Oct 11 2017
a(n) is the minimum dimension of a lattice able to generate, via cut-and-project, the quasilattice whose diffraction pattern features n-fold rotational symmetry. The case n=15 is the first n > 1 in which the following simpler definition fails: "a(n) is the minimum dimension of a lattice with n-fold rotational symmetry". - Felix Flicker, Nov 08 2017
Number of cyclic Latin squares of order n with the first row in ascending order. - Eduard I. Vatutin, Nov 01 2020
a(n) is the number of rational numbers p/q >= 0 (in lowest terms) such that p + q = n. - Rémy Sigrist, Jan 17 2021
From Richard L. Ollerton, May 08 2021: (Start)
Formulas for the numerous OEIS entries involving Dirichlet convolution of a(n) and some sequence h(n) can be derived using the following (n >= 1):
Sum_{d|n} phi(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k)) [see P. H. van der Kamp link] = Sum_{d|n} h(d)*phi(n/d) = Sum_{k=1..n} h(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). Similarly,
Sum_{d|n} phi(d)*h(d) = Sum_{k=1..n} h(n/gcd(n,k)) = Sum_{k=1..n} h(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
More generally,
Sum_{d|n} h(d) = Sum_{k=1..n} h(gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))/phi(n/gcd(n,k)).
In particular, for sequences involving the Möbius transform:
Sum_{d|n} mu(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)), where mu = A008683.
Use of gcd(n,k)*lcm(n,k) = n*k and phi(gcd(n,k))*phi(lcm(n,k)) = phi(n)*phi(k) provide further variations. (End)
From Richard L. Ollerton, Nov 07 2021: (Start)
Formulas for products corresponding to the sums above may found using the substitution h(n) = log(f(n)) where f(n) > 0 (for example, cf. formulas for the sum A018804 and product A067911 of gcd(n,k)):
Product_{d|n} f(n/d)^phi(d) = Product_{k=1..n} f(gcd(n,k)) = Product_{d|n} f(d)^phi(n/d) = Product_{k=1..n} f(n/gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d)^phi(d) = Product_{k=1..n} f(n/gcd(n,k)) = Product_{k=1..n} f(gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d) = Product_{k=1..n} f(gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(1/phi(n/gcd(n,k))),
Product_{d|n} f(n/d)^mu(d) = Product_{k=1..n} f(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))), where mu = A008683. (End)
a(n+1) is the number of binary words with exactly n distinct subsequences (when n > 0). - Radoslaw Zak, Nov 29 2021

Examples

			G.f. = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 2*x^6 + 6*x^7 + 4*x^8 + 6*x^9 + 4*x^10 + ...
a(8) = 4 with {1, 3, 5, 7} units modulo 8. a(10) = 4 with {1, 3, 7, 9} units modulo 10. - _Michael Somos_, Aug 27 2013
From _Eduard I. Vatutin_, Nov 01 2020: (Start)
The a(5)=4 cyclic Latin squares with the first row in ascending order are:
  0 1 2 3 4   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4
  1 2 3 4 0   2 3 4 0 1   3 4 0 1 2   4 0 1 2 3
  2 3 4 0 1   4 0 1 2 3   1 2 3 4 0   3 4 0 1 2
  3 4 0 1 2   1 2 3 4 0   4 0 1 2 3   2 3 4 0 1
  4 0 1 2 3   3 4 0 1 2   2 3 4 0 1   1 2 3 4 0
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 24.
  • M. Baake and U. Grimm, Aperiodic Order Vol. 1: A Mathematical Invitation, Encyclopedia of Mathematics and its Applications 149, Cambridge University Press, 2013: see Tables 3.1 and 3.2.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 409.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 193.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 154-156.
  • C. W. Curtis, Pioneers of Representation Theory ..., Amer. Math. Soc., 1999; see p. 3.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, Paris, 2004, Problème 529, pp. 71-257.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, Chapter V.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.
  • Carl Friedrich Gauss, "Disquisitiones Arithmeticae", Yale University Press, 1965; see p. 21.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994, p. 137.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B36.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 60, 62, 63, 288, 323, 328, 330.
  • Peter Hilton and Jean Pedersen, A Mathematical Tapestry, Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, pages 261-264, the Coach theorem.
  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.21 pp. 281-294.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 2 vols., 1976, Vol. II, problem 71, p. 126.
  • Paulo Ribenboim, The New Book of Prime Number Records.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 28-33.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 162-167.

Crossrefs

Cf. A002088 (partial sums), A008683, A003434 (steps to reach 1), A007755, A049108, A002202 (values), A011755 (Sum k*phi(k)).
Cf. also A005277 (nontotient numbers). For inverse see A002181, A006511, A058277.
Jordan function J_k(n) is a generalization - see A059379 and A059380 (triangle of values of J_k(n)), this sequence (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Row sums of triangles A134540, A127448, A143239, A143353 and A143276.
Equals right and left borders of triangle A159937. - Gary W. Adamson, Apr 26 2009
Values for prime powers p^e: A006093 (e=1), A036689 (e=2), A135177 (e=3), A138403 (e=4), A138407 (e=5), A138412 (e=6).
Values for perfect powers n^e: A002618 (e=2), A053191 (e=3), A189393 (e=4), A238533 (e=5), A306411 (e=6), A239442 (e=7), A306412 (e=8), A239443 (e=9).
Cf. A076479.
Cf. A023900 (Dirichlet inverse of phi), A306633 (Dgf at s=3).

Programs

  • Axiom
    [eulerPhi(n) for n in 1..100]
    
  • Haskell
    a n = length (filter (==1) (map (gcd n) [1..n])) -- Allan C. Wechsler, Dec 29 2014
    
  • Julia
    # Computes the first N terms of the sequence.
    function A000010List(N)
        phi = [i for i in 1:N + 1]
        for i in 2:N + 1
            if phi[i] == i
                for j in i:i:N + 1
                    phi[j] -= div(phi[j], i)
        end end end
    return phi end
    println(A000010List(68))  # Peter Luschny, Sep 03 2023
  • Magma
    [ EulerPhi(n) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    with(numtheory): A000010 := phi; [ seq(phi(n), n=1..100) ]; # version 1
    with(numtheory): phi := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := n*mul((1-1/t1[i][1]),i=1..nops(t1)); end; # version 2
    # Alternative without library function:
    A000010List := proc(N) local i, j, phi;
        phi := Array([seq(i, i = 1 .. N+1)]);
        for i from 2 to N + 1 do
            if phi[i] = i then
                for j from i by i to N + 1 do
                    phi[j] := phi[j] - iquo(phi[j], i) od
            fi od;
    return phi end:
    A000010List(68);  # Peter Luschny, Sep 03 2023
  • Mathematica
    Array[EulerPhi, 70]
  • Maxima
    makelist(totient(n),n,0,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • PARI
    {a(n) = if( n==0, 0, eulerphi(n))}; /* Michael Somos, Feb 05 2011 */
    
  • Python
    from sympy.ntheory import totient
    print([totient(i) for i in range(1, 70)])  # Indranil Ghosh, Mar 17 2017
    
  • Python
    # Note also the implementation in A365339.
    
  • Sage
    def A000010(n): return euler_phi(n) # Jaap Spies, Jan 07 2007
    
  • Sage
    [euler_phi(n) for n in range(1, 70)]  # Zerinvary Lajos, Jun 06 2009
    

Formula

phi(n) = n*Product_{distinct primes p dividing n} (1 - 1/p).
Sum_{d divides n} phi(d) = n.
phi(n) = Sum_{d divides n} mu(d)*n/d, i.e., the Moebius transform of the natural numbers; mu() = Moebius function A008683().
Dirichlet generating function Sum_{n>=1} phi(n)/n^s = zeta(s-1)/zeta(s). Also Sum_{n >= 1} phi(n)*x^n/(1 - x^n) = x/(1 - x)^2.
Multiplicative with a(p^e) = (p - 1)*p^(e-1). - David W. Wilson, Aug 01 2001
Sum_{n>=1} (phi(n)*log(1 - x^n)/n) = -x/(1 - x) for -1 < x < 1 (cf. A002088) - Henry Bottomley, Nov 16 2001
a(n) = binomial(n+1, 2) - Sum_{i=1..n-1} a(i)*floor(n/i) (see A000217 for inverse). - Jon Perry, Mar 02 2004
It is a classical result (certainly known to Landau, 1909) that lim inf n/phi(n) = 1 (taking n to be primes), lim sup n/(phi(n)*log(log(n))) = e^gamma, with gamma = Euler's constant (taking n to be products of consecutive primes starting from 2 and applying Mertens' theorem). See e.g. Ribenboim, pp. 319-320. - Pieter Moree, Sep 10 2004
a(n) = Sum_{i=1..n} |k(n, i)| where k(n, i) is the Kronecker symbol. Also a(n) = n - #{1 <= i <= n : k(n, i) = 0}. - Benoit Cloitre, Aug 06 2004 [Corrected by Jianing Song, Sep 25 2018]
Conjecture: Sum_{i>=2} (-1)^i/(i*phi(i)) exists and is approximately 0.558 (A335319). - Orges Leka (oleka(AT)students.uni-mainz.de), Dec 23 2004
From Enrique Pérez Herrero, Sep 07 2010: (Start)
a(n) = Sum_{i=1..n} floor(sigma_k(i*n)/sigma_k(i)*sigma_k(n)), where sigma_2 is A001157.
a(n) = Sum_{i=1..n} floor(tau_k(i*n)/tau_k(i)*tau_k(n)), where tau_3 is A007425.
a(n) = Sum_{i=1..n} floor(rad(i*n)/rad(i)*rad(n)), where rad is A007947. (End)
a(n) = A173557(n)*A003557(n). - R. J. Mathar, Mar 30 2011
a(n) = A096396(n) + A096397(n). - Reinhard Zumkeller, Mar 24 2012
phi(p*n) = phi(n)*(floor(((n + p - 1) mod p)/(p - 1)) + p - 1), for primes p. - Gary Detlefs, Apr 21 2012
For odd n, a(n) = 2*A135303((n-1)/2)*A003558((n-1)/2) or phi(n) = 2*c*k; the Coach theorem of Pedersen et al. Cf. A135303. - Gary W. Adamson, Aug 15 2012
G.f.: Sum_{n>=1} mu(n)*x^n/(1 - x^n)^2, where mu(n) = A008683(n). - Mamuka Jibladze, Apr 05 2015
a(n) = n - cototient(n) = n - A051953(n). - Omar E. Pol, May 14 2016
a(n) = lim_{s->1} n*zeta(s)*(Sum_{d divides n} A008683(d)/(e^(1/d))^(s-1)), for n > 1. - Mats Granvik, Jan 26 2017
Conjecture: a(n) = Sum_{a=1..n} Sum_{b=1..n} Sum_{c=1..n} 1 for n > 1. The sum is over a,b,c such that n*c - a*b = 1. - Benedict W. J. Irwin, Apr 03 2017
a(n) = Sum_{j=1..n} gcd(j, n) cos(2*Pi*j/n) = Sum_{j=1..n} gcd(j, n) exp(2*Pi*i*j/n) where i is the imaginary unit. Notice that the Ramanujan's sum c_n(k) := Sum_{j=1..n, gcd(j, n) = 1} exp(2*Pi*i*j*k/n) gives a(n) = Sum_{k|n} k*c_(n/k)(1) = Sum_{k|n} k*mu(n/k). - Michael Somos, May 13 2018
G.f.: x*d/dx(x*d/dx(log(Product_{k>=1} (1 - x^k)^(-mu(k)/k^2)))), where mu(n) = A008683(n). - Mamuka Jibladze, Sep 20 2018
a(n) = Sum_{d|n} A007431(d). - Steven Foster Clark, May 29 2019
G.f. A(x) satisfies: A(x) = x/(1 - x)^2 - Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Sep 06 2019
a(n) >= sqrt(n/2) (Nicolas). - Hugo Pfoertner, Jun 01 2020
a(n) > n/(exp(gamma)*log(log(n)) + 5/(2*log(log(n)))), except for n=223092870 (Rosser, Schoenfeld). - Hugo Pfoertner, Jun 02 2020
From Bernard Schott, Nov 28 2020: (Start)
Sum_{m=1..n} 1/a(m) = A028415(n)/A048049(n) -> oo when n->oo.
Sum_{n >= 1} 1/a(n)^2 = A109695.
Sum_{n >= 1} 1/a(n)^3 = A335818.
Sum_{n >= 1} 1/a(n)^k is convergent iff k > 1.
a(2n) = a(n) iff n is odd, and, a(2n) > a(n) iff n is even. (End) [Actually, a(2n) = 2*a(n) for even n. - Jianing Song, Sep 18 2022]
a(n) = 2*A023896(n)/n, n > 1. - Richard R. Forberg, Feb 03 2021
From Richard L. Ollerton, May 09 2021: (Start)
For n > 1, Sum_{k=1..n} phi^{(-1)}(n/gcd(n,k))*a(gcd(n,k))/a(n/gcd(n,k)) = 0, where phi^{(-1)} = A023900.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(gcd(n,k)))*rad(gcd(n,k))/gcd(n,k) = 0.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(n/gcd(n,k)))*rad(n/gcd(n,k))*gcd(n,k) = 0.
Sum_{k=1..n} a(gcd(n,k))/a(n/gcd(n,k)) = n. (End)
a(n) = Sum_{d|n, e|n} gcd(d, e)*mobius(n/d)*mobius(n/e) (the sum is a multiplicative function of n by Tóth, and takes the value p^e - p^(e-1) for n = p^e, a prime power). - Peter Bala, Jan 22 2024
Sum_{n >= 1} phi(n)*x^n/(1 + x^n) = x + 3*x^3 + 5*x^5 + 7*x^7 + ... = Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(4*n-2)). For the first equality see Pólya and Szegő, problem 71, p. 126. - Peter Bala, Feb 29 2024
Conjecture: a(n) = lim_{k->oo} (n^(k + 1))/A000203(n^k). - Velin Yanev, Dec 04 2024 [A000010(p) = p-1, A000203(p^k) = (p^(k+1)-1)/(p-1), so the conjecture is true if n is prime. - Vaclav Kotesovec, Dec 19 2024]

A048049 Denominator of Sum_{k=1..n} 1/phi(k).

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 12, 6, 3, 12, 60, 15, 60, 60, 120, 30, 240, 80, 720, 720, 720, 720, 7920, 7920, 1584, 1584, 1584, 1584, 11088, 11088, 55440, 13860, 1386, 11088, 11088, 11088, 11088, 11088, 11088, 5544, 6930, 13860, 13860, 3465, 27720, 27720, 637560, 1275120, 182160
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Examples

			1, 2, 5/2, 3, 13/4, 15/4, 47/12, 25/6, 13/3, 55/12, 281/60, 74/15, ...
		

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section I.27, page 29.

Crossrefs

Cf. A000010, A028415 (numerators).

Programs

  • Maple
    map(denom, ListTools:-PartialSums(map(1/numtheory:-phi, [$1..100]))); # Robert Israel, Apr 16 2019
  • Mathematica
    Denominator[Accumulate[Table[1/EulerPhi[k], {k, 1, 50}]]] (* Amiram Eldar, Sep 18 2022 *)
  • PARI
    a(n) = denominator(sum(k=1, n, 1/eulerphi(k))); \\ Michel Marcus, Sep 18 2022

A085609 Decimal expansion of Sum{p prime>=2} log(p)/(p^2-p+1).

Original entry on oeis.org

6, 0, 8, 3, 8, 1, 7, 1, 7, 8, 6, 3, 3, 2, 4, 7, 2, 2, 6, 8, 3, 8, 3, 4, 5, 8, 5, 8, 1, 5, 6, 2, 0, 1, 8, 7, 7, 5, 9, 1, 4, 8, 5, 9, 8, 2, 2, 6, 0, 2, 2, 5, 2, 1, 1, 9, 9, 5, 7, 3, 0, 8, 1, 5, 5, 2, 1, 7, 9, 7, 3, 1, 6, 6, 2, 1, 0, 7, 3, 9, 9, 5, 1, 5, 3, 4, 1, 7, 1, 3, 6, 8, 9, 7, 6, 6, 3, 1, 6, 8, 5, 6, 7, 4, 2
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Comments

Appears in the asymptotic formula for Sum{k=1..n} 1/phi(k), with phi(k) being Euler's totient function. - Stanislav Sykora, Nov 14 2014

Examples

			0.60838171786332472...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.7 Euler totient constants, p. 116.

Crossrefs

Programs

  • Mathematica
    digits = 105; m0 = 100; dm = 100; Clear[s]; s[n_] := s[n] = Sum[ Switch[ Mod[k, 6], 0, 1, 1, 0, 2, -1, 3, -1, 4, 0, 5, 1] * PrimeZetaP'[k], {k, 2, n}] // N[#, digits+40]&; Print[m0, " ", s[m0]]; s[m = m0+dm]; While[ Print[m, " ", s[m]]; RealDigits[s[m], 10, digits+5] != RealDigits[s[m-dm], 10, digits+5], m = m+dm]; RealDigits[s[m], 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)

Formula

Equals lim_{n->infinity} (Gamma + log(n) - c*Sum_{k=1..n} 1/phi(k)), where Gamma is the Euler-Mascheroni constant, and c = zeta(6)/(zeta(2)*zeta(3)) = 1/A082695. This equals further lim_{n->infinity} Sum{k=1..n} (1/k - c/phi(k)) and lim_{n->infinity}(A001008(n)/A002805(n) - (A028415(n)/A048049(n))/A082695). - Stanislav Sykora, Nov 15 2014

Extensions

More terms from Benoit Cloitre, Mar 06 2013
More digits from Jean-François Alcover, Sep 11 2015

A211177 Numerator of Sum_{k=1..n}(-1)^k/phi(k), where phi = A000010.

Original entry on oeis.org

-1, 0, -1, 0, -1, 1, 1, 1, 1, 5, 19, 17, 29, 13, 21, 13, 47, 181, 503, 593, 533, 121, 1259, 1457, 6889, 7549, 7109, 7769, 52403, 59333, 11497, 6095, 29089, 61643, 59333, 63953, 62413, 7277, 21061, 2777, 10877, 11647, 3809, 3963, 1438, 271, 3064, 51439, 7217, 7493
Offset: 1

Views

Author

Benoit Cloitre, Feb 01 2013

Keywords

Examples

			Fractions begin with -1, 0, -1/2, 0, -1/4, 1/4, 1/12, 1/3, 1/6, 5/12, 19/60, 17/30, ...
		

Crossrefs

Cf. A000010, A028415, A211178 (denominators).

Programs

  • Mathematica
    Numerator @ Accumulate[Table[(-1)^k/EulerPhi[k], {k, 1, 50}]] (* Amiram Eldar, Nov 20 2020 *)
  • PARI
    a(n)=numerator(sum(k=1,n,(-1)^k/eulerphi(k)))

Formula

a(n)/A211178(n) = c*log(n) + O(1) with a suitable constant c (see ref).
The constant above is c = zeta(2)*zeta(3)/(3*zeta(6)) = (1/3) * A082695. - Amiram Eldar, Nov 20 2020
More accurately, a(n)/A211178(n) ~ (A/3) * (log(n) + gamma - B - 8*log(2)/3) + O(log(n)^(5/3)/n), where A = zeta(2)*zeta(3)/zeta(6) (A082695), gamma is Euler's constant (A001620), and B = Sum_{p prime} log(p)/(p^2-p+1) (A085609) (Bordellès and Cloitre, 2013; Tóth, 2017). - Amiram Eldar, Oct 14 2022

Extensions

More terms from Amiram Eldar, Nov 20 2020

A068885 Numerator of Sum_{k=1..n} k/phi(k).

Original entry on oeis.org

1, 3, 9, 13, 31, 43, 143, 167, 185, 215, 1141, 1321, 231, 763, 3277, 3517, 7289, 8009, 24787, 26587, 27847, 29431, 332021, 355781, 365681, 382841, 394721, 413201, 2949827, 3157727, 643003, 665179, 3417371, 3535181, 3616031, 3782351, 1279777, 3956371, 4046461
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Examples

			1, 3, 9/2, 13/2, 31/4, 43/4, 143/12, 167/12, 185/12, ...
		

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section I.27, page 29.

Crossrefs

Cf. A069947 (denominators), A000010, A028415, A048049, A082695.

Programs

  • Mathematica
    Numerator @ Accumulate @ Table[k/EulerPhi[k], {k, 1, 40}] (* Amiram Eldar, Sep 18 2022 *)
  • PARI
    a(n) = numerator(sum(k=1, n, k/eulerphi(k))); \\ Michel Marcus, Sep 18 2022

Formula

a(n)/A069947(n) ~ c * n - log(n)/2 + O(log(n)^(2/3)), where c = zeta(2)*zeta(3)/zeta(6) (A082695) (Sitaramachandrarao, 1985). - Amiram Eldar, Sep 18 2022

A069947 Denominator of Sum_{k=1..n} k/phi(k).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 12, 12, 12, 12, 60, 60, 10, 30, 120, 120, 240, 240, 720, 720, 720, 720, 7920, 7920, 7920, 7920, 7920, 7920, 55440, 55440, 11088, 11088, 55440, 55440, 55440, 55440, 18480, 55440, 55440, 55440, 55440, 55440, 55440, 11088, 11088, 11088, 255024, 255024
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Examples

			1, 3, 9/2, 13/2, 31/4, 43/4, 143/12, 167/12, 185/12, ...
		

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter I, p. 29, section I.27.

Crossrefs

Cf. A068885 (numerators), A028415, A048049.

Programs

  • Maple
    map(denom, ListTools:-PartialSums([seq(n/numtheory:-phi(n),n=1..100)]));
    # Robert Israel, May 01 2018
  • Mathematica
    Accumulate[Table[n/EulerPhi[n],{n,50}]]//Denominator (* Harvey P. Dale, May 24 2021 *)
  • PARI
    a(n) = denominator(sum(k = 1, n, k/eulerphi(k))); \\ Amiram Eldar, Apr 25 2024

A211306 Numerator of Sum_{k=1..n} 1/lambda(k), where lambda(k) is the Carmichael's lambda function.

Original entry on oeis.org

1, 2, 5, 3, 13, 15, 47, 53, 55, 29, 74, 163, 331, 341, 89, 371, 1499, 513, 4657, 4837, 4957, 5029, 55679, 59639, 12007, 12139, 12227, 12491, 87833, 90605, 454873, 461803, 467347, 117703, 59429, 30292, 121553, 122323, 61739, 126943, 254579, 259199, 259859
Offset: 1

Views

Author

Michel Lagneau, May 25 2012

Keywords

Examples

			1, 2, 5/2, 3, 13/4, 15/4, 47/12, 53/12, 55/12, 29/6, 74/15, 163/30, ...
		

Crossrefs

Cf. A002322, A028415, A212716 (denominator).

Programs

  • Maple
    with(numtheory): a:=n->numer(sum(1/lambda(k), k=1..n)): seq(a(n), n=1..50);
  • Mathematica
    Numerator[Table[Sum[1/CarmichaelLambda[k],{k,1,n}],{n,1,50}]]
    Numerator @ Accumulate @ Table[1 / CarmichaelLambda[n], {n, 1, 50}] (* Amiram Eldar, Sep 19 2019 *)

A067578 a(n) = Product_{i=1..n} phi(i) * Sum_{i=1..n} 1/phi(i) where phi is the Euler totient function A000010(n).

Original entry on oeis.org

1, 2, 5, 12, 52, 120, 752, 3200, 19968, 84480, 863232, 3637248, 44384256, 275152896, 2254307328, 18459131904, 298743496704, 1846819160064, 33568893960192, 274421835104256, 3340027488632832, 33963860494909440, 752840786973818880, 6146715129678397440, 123926213264670720000
Offset: 1

Views

Author

Benoit Cloitre, Jan 30 2002

Keywords

Crossrefs

Programs

  • PARI
    a(n) = prod(i=1, n, eulerphi(i)) * sum(i=1, n, 1/eulerphi(i)); \\ Michel Marcus, Jan 09 2021

Extensions

More terms from Michel Marcus, Jan 09 2021

A146323 a(n) = floor(Sum_{i=1..n} (1/phi(i))).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9
Offset: 1

Views

Author

Ctibor O. Zizka, Oct 30 2008

Keywords

Comments

Looking on the number of 1's, 2's, ..., k's in this sequence we obtain the sequence (1,2,4,5,9,16,25,42,72,...). Limit_{k->oo} (number of (k+1)'s / number of(k's)) = sqrt(e).
The limit above is wrong. The correct limit is exp(zeta(6)/(zeta(2)*zeta(3))) = exp(1/A082695) = 1.672818789624... . - Amiram Eldar, Jul 04 2025

Crossrefs

Programs

  • Mathematica
    IntegerPart[Accumulate[1/EulerPhi[Range[110]]]] (* Harvey P. Dale, Dec 19 2015 *)
  • PARI
    list(lim) = {my(s = 0); for(k = 1, lim, s += 1/eulerphi(k); print1(floor(s), ", "));} \\ Amiram Eldar, Jul 04 2025

Formula

a(n) = floor(A028415(n)/A048049(n)). - Amiram Eldar, Jul 04 2025

A357818 Numerators of the partial sums of the reciprocals of the Dedekind psi function (A001615).

Original entry on oeis.org

1, 4, 19, 7, 23, 2, 17, 53, 55, 169, 175, 89, 641, 1303, 331, 1345, 1373, 1387, 7061, 2377, 9613, 29119, 29539, 29749, 6017, 6065, 6121, 6163, 31151, 31291, 15803, 3977, 16013, 48319, 24317, 12211, 233899, 58774, 472757, 59344, 119543, 1918673, 21249043, 21336823
Offset: 1

Views

Author

Amiram Eldar, Oct 14 2022

Keywords

Examples

			Fractions begin with 1, 4/3, 19/12, 7/4, 23/12, 2, 17/8, 53/24, 55/24, 169/72, 175/72, 89/36, ...
		

Crossrefs

Cf. A001615, A173290, A357819 (denominators).
Similar sequences: A028415, A104528, A212717.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Numerator[Accumulate[1/Array[psi[#] &, 50]]]
  • PARI
    f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = numerator(sum(k=1, n, 1/f(k))); \\ Michel Marcus, Oct 15 2022

Formula

a(n) = numerator(Sum_{k=1..n} 1/psi(k)).
a(n)/A357819(n) ~ C * (log(n) + gamma + D) + O(log(n)^(2/3) * log(log(n))^(4/3) / n), where C = Product_{p prime} (1 - 1/(p*(p+1))) (A065463), and D = Sum_{p prime} log(p)/(p^2+p-1) (A335707) (Sita Ramaiah and Suryanarayana, 1979; Tóth, 2017).
Showing 1-10 of 10 results.