cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A068885 Numerator of Sum_{k=1..n} k/phi(k).

Original entry on oeis.org

1, 3, 9, 13, 31, 43, 143, 167, 185, 215, 1141, 1321, 231, 763, 3277, 3517, 7289, 8009, 24787, 26587, 27847, 29431, 332021, 355781, 365681, 382841, 394721, 413201, 2949827, 3157727, 643003, 665179, 3417371, 3535181, 3616031, 3782351, 1279777, 3956371, 4046461
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Examples

			1, 3, 9/2, 13/2, 31/4, 43/4, 143/12, 167/12, 185/12, ...
		

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section I.27, page 29.

Crossrefs

Cf. A069947 (denominators), A000010, A028415, A048049, A082695.

Programs

  • Mathematica
    Numerator @ Accumulate @ Table[k/EulerPhi[k], {k, 1, 40}] (* Amiram Eldar, Sep 18 2022 *)
  • PARI
    a(n) = numerator(sum(k=1, n, k/eulerphi(k))); \\ Michel Marcus, Sep 18 2022

Formula

a(n)/A069947(n) ~ c * n - log(n)/2 + O(log(n)^(2/3)), where c = zeta(2)*zeta(3)/zeta(6) (A082695) (Sitaramachandrarao, 1985). - Amiram Eldar, Sep 18 2022

A385562 Numbers m such that (1/m) * Sum_{k=1..m} k/phi(k) sets a record value, where phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 22, 24, 30, 42, 60, 66, 72, 78, 84, 90, 114, 120, 150, 156, 180, 198, 210, 300, 330, 390, 420, 510, 546, 570, 600, 630, 750, 780, 840, 966, 990, 1122, 1170, 1200, 1260, 1410, 1470, 1560, 1596, 1620, 1650, 1680, 1806, 1830, 1890, 1980, 2100
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2025

Keywords

Comments

Limit_{m->oo} (1/m) * Sum_{k=1..m} k/phi(k) = zeta(2)*zeta(3)/zeta(6) (A082695) (Sitaramachandrarao, 1985; Sándor et al., 2005). This sequence is infinite if this mean converges to the limit only from below.

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 29.

Crossrefs

Programs

  • Mathematica
    seq[lim_] := Module[{s = {}, sum = 0, rm = 0, r}, Do[sum += k/EulerPhi[k]; r = sum/k; If[r > rm, rm = r; AppendTo[s, k]], {k, 1, lim}]; s]; seq[2500]
  • PARI
    list(lim) = {my(sm = 0, rm = 0, r); for(k = 1, lim, sm += k/eulerphi(k); r = sm/k; if(r > rm, rm = r; print1(k, ", ")));}
Showing 1-2 of 2 results.