cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A069947 Denominator of Sum_{k=1..n} k/phi(k).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 12, 12, 12, 12, 60, 60, 10, 30, 120, 120, 240, 240, 720, 720, 720, 720, 7920, 7920, 7920, 7920, 7920, 7920, 55440, 55440, 11088, 11088, 55440, 55440, 55440, 55440, 18480, 55440, 55440, 55440, 55440, 55440, 55440, 11088, 11088, 11088, 255024, 255024
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Examples

			1, 3, 9/2, 13/2, 31/4, 43/4, 143/12, 167/12, 185/12, ...
		

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter I, p. 29, section I.27.

Crossrefs

Cf. A068885 (numerators), A028415, A048049.

Programs

  • Maple
    map(denom, ListTools:-PartialSums([seq(n/numtheory:-phi(n),n=1..100)]));
    # Robert Israel, May 01 2018
  • Mathematica
    Accumulate[Table[n/EulerPhi[n],{n,50}]]//Denominator (* Harvey P. Dale, May 24 2021 *)
  • PARI
    a(n) = denominator(sum(k = 1, n, k/eulerphi(k))); \\ Amiram Eldar, Apr 25 2024

A385562 Numbers m such that (1/m) * Sum_{k=1..m} k/phi(k) sets a record value, where phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 22, 24, 30, 42, 60, 66, 72, 78, 84, 90, 114, 120, 150, 156, 180, 198, 210, 300, 330, 390, 420, 510, 546, 570, 600, 630, 750, 780, 840, 966, 990, 1122, 1170, 1200, 1260, 1410, 1470, 1560, 1596, 1620, 1650, 1680, 1806, 1830, 1890, 1980, 2100
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2025

Keywords

Comments

Limit_{m->oo} (1/m) * Sum_{k=1..m} k/phi(k) = zeta(2)*zeta(3)/zeta(6) (A082695) (Sitaramachandrarao, 1985; Sándor et al., 2005). This sequence is infinite if this mean converges to the limit only from below.

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 29.

Crossrefs

Programs

  • Mathematica
    seq[lim_] := Module[{s = {}, sum = 0, rm = 0, r}, Do[sum += k/EulerPhi[k]; r = sum/k; If[r > rm, rm = r; AppendTo[s, k]], {k, 1, lim}]; s]; seq[2500]
  • PARI
    list(lim) = {my(sm = 0, rm = 0, r); for(k = 1, lim, sm += k/eulerphi(k); r = sm/k; if(r > rm, rm = r; print1(k, ", ")));}
Showing 1-2 of 2 results.