A379149 Specialization of the Elementary Symmetric Functions e(n) at x_i -> Euler phi(i).
1, 1, 1, 1, 2, 1, 1, 4, 5, 2, 1, 6, 13, 12, 4, 1, 10, 37, 64, 52, 16, 1, 12, 57, 138, 180, 120, 32, 1, 18, 129, 480, 1008, 1200, 752, 192, 1, 22, 201, 996, 2928, 5232, 5552, 3200, 768, 1, 28, 333, 2202, 8904, 22800, 36944, 36512, 19968, 4608, 1, 32, 445, 3534, 17712, 58416, 128144, 184288, 166016, 84480, 18432
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 4, 5, 2; 1, 6, 13, 12, 4; 1, 10, 37, 64, 52, 16; 1, 12, 57, 138, 180, 120, 32; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Mathematics Stack Exchange, Specializations of elementary symmetric polynomials
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, b(n-1)*(1+x*numtheory[phi](n))) end: T:= (n, k)-> coeff(b(n), x, k): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Dec 16 2024
-
Mathematica
Table[CoefficientList[Expand@Product[z EulerPhi[k]+1,{k,0,n}],z,n+1],{n,0,10}]
-
PARI
row(n) = Vecrev(prod(k=1, n, 1 + 'x * eulerphi(k))) \\ Andrew Howroyd, Dec 16 2024
Formula
T(n,k) = [x^k] Product_{j=1..n} (1 + x*phi(j)). - Andrew Howroyd, Dec 16 2024
Comments