A085610 Least m ending in 1 such that m^n ends in a string of n 0's followed by the final 1.
101, 251, 10001, 18751, 200001, 4218751, 100000001, 74218751, 10000000001, 3574218751, 1000000000001, 163574218751, 100000000000001, 480163574218751, 2000000000000001, 6230163574218751, 1000000000000000001
Offset: 1
Keywords
Examples
We have a(4)=18751 because the latter is the shortest number whose fourth power ends in 00001; Actually,18751^4=123622560703200001.
Links
- Robert Israel, Table of n, a(n) for n = 1..400
Programs
-
Maple
f:= proc(n) local z,R; if igcd(n,10)=1 then return 10^(n+1)+1 fi; min(select(t -> t mod 10 = 1, map(rhs@op, {msolve(z^n=1, 10^(n+1))} minus {{z=1}}))); end proc: map(f, [$1..30]); # Robert Israel, Sep 24 2019
Extensions
More terms from Ray Chandler, Nov 23 2003
Comments