cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085624 Sum of the entries in the character table of the dihedral group D_{2n} of order 2n.

Original entry on oeis.org

2, 4, 5, 8, 8, 10, 11, 14, 14, 16, 17, 20, 20, 22, 23, 26, 26, 28, 29, 32, 32, 34, 35, 38, 38, 40, 41, 44, 44, 46, 47, 50, 50, 52, 53, 56, 56, 58, 59, 62, 62, 64, 65, 68, 68, 70, 71, 74, 74, 76, 77, 80, 80, 82, 83, 86, 86, 88, 89, 92, 92, 94, 95, 98, 98, 100
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 09 2003

Keywords

Examples

			The character table for D_8 is
 1  1  1  1  1
 1  1  1 -1 -1
 1  1 -1  1 -1
 1  1 -1 -1  1
 2 -2  0  0  0
		

Programs

  • GAP
    Display(CharacterTable("D8"));
    
  • Mathematica
    Table[1 + (6 n + (1 + (-1)^n) I^n + 2 (-1)^n)/4, {n, 66}] (* Bruno Berselli, Jul 09 2012 *)
    Table[Which[OddQ[n],(3n+1)/2,Mod[n,4]==2,(3n+2)/2,Mod[n,4]==0,(3n+4)/2],{n,70}] (* Harvey P. Dale, Mar 06 2020 *)
  • Maxima
    makelist(1+(6*n+(1+(-1)^n)*%i^n+2*(-1)^n)/4,n,1,66); /* Bruno Berselli, Jul 09 2012 */

Formula

From Eric M. Schmidt, Jul 08 2012: (Start)
If n is odd, a(n) = (3n + 1)/2.
If n == 2 (mod 4), a(n) = (3n + 2)/2.
If 4 divides n, a(n) = (3n + 4)/2. (End)
G.f.: x*(2+2*x+x^2+3*x^3-2*x^4)/((1-x)^2*(1+x+x^2+x^3)). - Bruno Berselli, Jul 09 2012
a(n) = 1+(6*n+(1+(-1)^n)*i^n+2*(-1)^n)/4, where i=sqrt(-1). - Bruno Berselli, Jul 09 2012

Extensions

More terms from Eric M. Schmidt, Jul 08 2012