cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A019988 Number of ways of embedding a connected graph with n edges in the square lattice.

Original entry on oeis.org

1, 2, 5, 16, 55, 222, 950, 4265, 19591, 91678, 434005, 2073783, 9979772, 48315186, 235088794, 1148891118, 5636168859, 27743309673
Offset: 1

Views

Author

Keywords

Comments

It is assumed that all edges have length one. - N. J. A. Sloane, Apr 17 2019
These are referred to as 'polysticks', 'polyedges' or 'polyforms'. - Jack W Grahl, Jul 24 2018
Number of connected subgraphs of the square lattice (or grid) containing n length-one line segments. Configurations differing only a rotation or reflection are not counted as different. The question may also be stated in terms of placing unit toothpicks in a connected arrangement on the square lattice. - N. J. A. Sloane, Apr 17 2019
The solution for n=5 features in the card game Digit. - Paweł Rafał Bieliński, Apr 17 2019

References

  • Brian R. Barwell, "Polysticks," Journal of Recreational Mathematics, 22 (1990), 165-175.

Crossrefs

If only translations (but not rotations) are factored, consider fixed polyedges (A096267).
If reflections are considered different, we obtain the one-sided polysticks, counted by (A151537). - Jack W Grahl, Jul 24 2018
Cf. A001997, A003792, A006372, A059103, A085632, A056841 (tree-like), A348095 (with cycles), A348096 (refined by symmetry), A181528.
See A336281 for another version.
6th row of A366766.

Formula

A348095(n) + A056841(n+1) = a(n). - R. J. Mathar, Sep 30 2021

Extensions

More terms from Brendan Owen (brendan_owen(AT)yahoo.com), Feb 20 2002
a(18) from John Mason, Jun 01 2023

A085633 Number of not necessarily connected coin graphs, also known as "penny" graphs.

Original entry on oeis.org

1, 2, 4, 10, 25, 80, 267, 1078
Offset: 1

Views

Author

Leah Hackman (lhackman(AT)cs.ualberta.ca), Martha Lednicky (lednicky(AT)cs.ualberta.ca), Jim Nastos and Rick L. Shepherd, Jul 10 2003

Keywords

Comments

The intersection graph of unit disks which are not allowed to overlap.

Crossrefs

Cf. A085632.
Showing 1-2 of 2 results.