A085644 a(0) = 1; a(n+1) = a(n)*2n + 2n + 1.
1, 1, 5, 25, 157, 1265, 12661, 151945, 2127245, 34035937, 612646885, 12252937721, 269564629885, 6469551117265, 168208329048917, 4709833213369705, 141294996401091181, 4521439884834917825, 153728956084387206085, 5534242419037939419097, 210301211923441697925725
Offset: 0
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, 2*((n-1)*a(n-1)+n)-1) end: seq(a(n), n=0..20); # Alois P. Heinz, Mar 14 2023
-
Mathematica
nxt[{n_,a_}]:={n+1,a*2n+2n+1}; Transpose[NestList[nxt,{1,1},20]][[2]] (* Harvey P. Dale, Aug 06 2016 *)
-
PARI
sum2x(n) = { s=1; sr=0; forstep(x=2,n,2, s=x*(s+1)+1; print1(s","); sr += 1.0/s; ); print(); print(sr) }
Extensions
a(0)=1 prepended and edited by Alois P. Heinz, Mar 14 2023
Comments