cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085730 Euler's totient function applied to the sequence of prime powers.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 4, 6, 10, 12, 8, 16, 18, 22, 20, 18, 28, 30, 16, 36, 40, 42, 46, 42, 52, 58, 60, 32, 66, 70, 72, 78, 54, 82, 88, 96, 100, 102, 106, 108, 112, 110, 100, 126, 64, 130, 136, 138, 148, 150, 156, 162, 166, 156, 172, 178, 180, 190, 192, 196, 198, 210
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 20 2003

Keywords

Crossrefs

Programs

  • Haskell
    a085730 1 = 1
    a085730 n = (p - 1) * p ^ (e - 1)
       where p =  a025473 n; e =  a025474 n
    -- Reinhard Zumkeller, Feb 16 2012
    
  • Mathematica
    f[p_, e_] := (p-1)*p^(e-1); s[n_] := If[n == 1, 1, If[PrimePowerQ[n], f @@ (FactorInteger[n][[1]]), Nothing]]; Array[s, 220] (* Amiram Eldar, Apr 05 2025 *)
  • PARI
    list(lim)=my(v=List(primes(primepi(lim)))); listput(v,1); for(e=2, log(lim+.5)\log(2),forprime(p=2,(lim+.5)^(1/e),listput(v, p^e))); apply(n->eulerphi(n),vecsort(Vec(v))) \\ Charles R Greathouse IV, Apr 30 2012

Formula

a(n) = A000010(A000961(n)).
a(p^e) = (p-1)*p^(e-1).
a(n) = (A025473(n)-1)*A025473(n)^(A025474(n)-1).