A085730 Euler's totient function applied to the sequence of prime powers.
1, 1, 2, 2, 4, 6, 4, 6, 10, 12, 8, 16, 18, 22, 20, 18, 28, 30, 16, 36, 40, 42, 46, 42, 52, 58, 60, 32, 66, 70, 72, 78, 54, 82, 88, 96, 100, 102, 106, 108, 112, 110, 100, 126, 64, 130, 136, 138, 148, 150, 156, 162, 166, 156, 172, 178, 180, 190, 192, 196, 198, 210
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime Power.
- Eric Weisstein's World of Mathematics, Totient Function.
Programs
-
Haskell
a085730 1 = 1 a085730 n = (p - 1) * p ^ (e - 1) where p = a025473 n; e = a025474 n -- Reinhard Zumkeller, Feb 16 2012
-
Mathematica
f[p_, e_] := (p-1)*p^(e-1); s[n_] := If[n == 1, 1, If[PrimePowerQ[n], f @@ (FactorInteger[n][[1]]), Nothing]]; Array[s, 220] (* Amiram Eldar, Apr 05 2025 *)
-
PARI
list(lim)=my(v=List(primes(primepi(lim)))); listput(v,1); for(e=2, log(lim+.5)\log(2),forprime(p=2,(lim+.5)^(1/e),listput(v, p^e))); apply(n->eulerphi(n),vecsort(Vec(v))) \\ Charles R Greathouse IV, Apr 30 2012