A116994 Prime partial sums of triangular numbers with prime indices.
3, 1759, 3323, 469303, 605113, 641969, 1110587, 1426669, 11148289, 18352349, 20473721, 21820391, 24710753, 30048589, 36690923, 40785301, 97060681, 155135369, 160593239, 168132247, 361391623, 377965069, 416572171, 645803201
Offset: 1
Examples
a(1) = Sum_{i=1..1} prime(i)*(prime(i)+1)/2 = T(2) = 3. a(2) = Sum_{i=1..11} prime(i)*(prime(i)+1)/2 = T(2)+T(3)+T(5)+T(7)+T(11)+T(13)+T(17)+T(19)+T(23)+T(29)+T(31) = 1759. a(3) = Sum_{i=1..13} prime(i)*(prime(i)+1)/2 = 3323. a(4) = Sum_{i=1..53} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(241) = 469303. a(5) = Sum_{i=1..57} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(269) = 605113. a(6) = Sum_{i=1..58} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(271) = 641969. a(7) = Sum_{i=1..68} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(337) = 1110587.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..2000
Programs
-
Maple
T:=n->n*(n+1)/2: a:=proc(n): if isprime(sum(T(ithprime(j)),j=1..n))=true then sum(T(ithprime(j)),j=1..n) else fi end: seq(a(n),n=1..500); # Emeric Deutsch, Apr 06 2006
-
Mathematica
Select[Accumulate[Table[(n(n+1))/2,{n,Prime[Range[500]]}]],PrimeQ] (* Harvey P. Dale, Jan 25 2015 *)
Extensions
More terms from Emeric Deutsch, Apr 06 2006
Comments