A085748 G.f.: 1/(1-G001190), where G001190 = x + x^2 + x^3 + 2x^4 + 3x^5 + ... is the g.f. for the Wedderburn-Etherington numbers A001190.
1, 1, 2, 4, 9, 20, 46, 106, 248, 582, 1376, 3264, 7777, 18581, 44526, 106936, 257379, 620577, 1498788, 3625026, 8779271, 21287278, 51671864, 125550018, 305333281, 743179460, 1810290446, 4412783988, 10763786019, 26271534125, 64158771500, 156769178340
Offset: 0
Keywords
Examples
G.f. = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 46*x^6 + 106*x^7 + 248*x^8 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2536
- M. R. Bremner, L. A. Peresi and J. Sanchez-Ortega, Malcev dialgebras, arXiv preprint arXiv:1108.0586 [math.RA], 2011.
- Chloe E. Shiff and Noah A. Rosenberg, Enumeration of rooted binary perfect phylogenies, arXiv:2410.14915 [q-bio.PE], 2024. See pp. 9, 17.
Crossrefs
Cf. A001190.
Programs
-
Maple
b:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0, (t-> t*(1-t)/2)(b(n/2)))+add(b(i)*b(n-i), i=1..n/2)) end: a:= proc(n) option remember; `if`(n<1, 1, add(a(n-i)*b(i), i=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Sep 07 2017
-
Mathematica
b[n_] := b[n] = If[n < 2, n, If[OddQ[n], 0, Function[t, t*(1 - t)/2][ b[n/2] ] ] + Sum[b[i]*b[n - i], {i, 1, n/2}] ]; a[n_] := a[n] = If[n < 1, 1, Sum[a[n - i]*b[i], {i, 1, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
-
PARI
{a(n) = local(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = sqrt( subst( x / (1 - 2*x), x, x * subst(A, x, x^2)) / x)); polcoeff(A, n))}; /* Michael Somos, Feb 17 2004 */
Formula
G.f. A(x) satisfies: x * A(x)^2 = B(x * A(x^2)) where B(x) = x / (1 - 2*x). - Michael Somos, Feb 17 2004
Comments