A085765 Partial sums and bisection of A086450.
1, 2, 4, 5, 9, 11, 16, 17, 26, 30, 41, 43, 59, 64, 81, 82, 108, 117, 147, 151, 192, 203, 246, 248, 307, 323, 387, 392, 473, 490, 572, 573, 681, 707, 824, 833, 980, 1010, 1161, 1165, 1357, 1398, 1601, 1612, 1858, 1901, 2149, 2151, 2458, 2517
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
b:= proc(n) local m; b(n):= `if`(n=0, 1, `if`(irem(n, 2, 'm')=1, b(m), a(m))) end: a:= proc(n) a(n):= b(n) +`if`(n=0, 0, a(n-1)) end: seq(a(n), n=0..100); # Alois P. Heinz, Sep 26 2013
-
Mathematica
b[0] = 1; b[n_] := b[n] = If[EvenQ[n], Sum[b[n/2-k], {k, 0, n/2}], b[(n-1)/2]]; A085765 = Table[b[n], {n, 0, 100}] // Accumulate (* Jean-François Alcover, Mar 28 2017 *)
-
PARI
v=vector(1000);v[1]=1;s=1;for(n=2,1000,v[n]=if(n%2==0,v[n/2],s=s+v[(n+1)/2];print1(s",");s))
-
PARI
lista(nn) = {v=vector(nn); v[1]=1; s=1; for(n = 2, nn, v[n]= if(n%2==0, v[n/2], s=s+v[(n+1)/2])); forstep(i = 1, nn, 2, print1(v[i], ", "););} \\ Michel Marcus, Sep 26 2013
Comments