cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085765 Partial sums and bisection of A086450.

Original entry on oeis.org

1, 2, 4, 5, 9, 11, 16, 17, 26, 30, 41, 43, 59, 64, 81, 82, 108, 117, 147, 151, 192, 203, 246, 248, 307, 323, 387, 392, 473, 490, 572, 573, 681, 707, 824, 833, 980, 1010, 1161, 1165, 1357, 1398, 1601, 1612, 1858, 1901, 2149, 2151, 2458, 2517
Offset: 0

Views

Author

Ralf Stephan, Jul 22 2003

Keywords

Comments

Sum of inverses of a(n) is 1.5398789314089581123...
Conjecture: log(a(n))/log(n) grows unboundedly.
Conjecture: a(n) mod 2 repeats the 7-pattern 0,0,1,1,1,0,1.
The conjecture concerning the mod 2 pattern follows directly from the corresponding conjecture proved in A086450. - Lambert Herrgesell (zero815(AT)googlemail.com), May 08 2007

Programs

  • Maple
    b:= proc(n) local m; b(n):= `if`(n=0, 1,
          `if`(irem(n, 2, 'm')=1, b(m), a(m)))
        end:
    a:= proc(n) a(n):= b(n) +`if`(n=0, 0, a(n-1)) end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Sep 26 2013
  • Mathematica
    b[0] = 1;
    b[n_] := b[n] = If[EvenQ[n], Sum[b[n/2-k], {k, 0, n/2}], b[(n-1)/2]]; A085765 = Table[b[n], {n, 0, 100}] // Accumulate (* Jean-François Alcover, Mar 28 2017 *)
  • PARI
    v=vector(1000);v[1]=1;s=1;for(n=2,1000,v[n]=if(n%2==0,v[n/2],s=s+v[(n+1)/2];print1(s",");s))
    
  • PARI
    lista(nn) = {v=vector(nn); v[1]=1; s=1; for(n = 2, nn, v[n]= if(n%2==0, v[n/2], s=s+v[(n+1)/2])); forstep(i = 1, nn, 2, print1(v[i], ", "););} \\ Michel Marcus, Sep 26 2013

Formula

a(n) = A086450(2n) = A086450(0) + ... + A086450(n). - Charles R Greathouse IV, Sep 26 2013