cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085818 For n > 1: a(n) = p if n = p^e with p prime and e > 1, otherwise a(n) = (n-m)-th prime, where m = number of nonprime prime powers <= n; a(1)=1.

Original entry on oeis.org

1, 2, 3, 2, 5, 7, 11, 2, 3, 13, 17, 19, 23, 29, 31, 2, 37, 41, 43, 47, 53, 59, 61, 67, 5, 71, 3, 73, 79, 83, 89, 2, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 7, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 04 2003

Keywords

Comments

a(n) = A025473(n) if n = p^e with p prime and e > 1, otherwise a(n) = A008578(n-A085501(n));
n divides A085819(n) = Product_{k<=n} a(k), as by construction: a(1)=1; if n divides A085819(n-1) then a(n) = smallest prime not occurring earlier; if n does not divide A085819(n-1) then a(n) = greatest prime factor of n (A006530);
A000040 occurs infinitely many times as a subsequence.
a(A085971(n))=A000040(n) and for all k > 1: a(A000040(n)^k)=A000040(n); A085985(n)=A049084(a(n)). - Reinhard Zumkeller, Jul 06 2003

Crossrefs

Programs

  • PARI
    f(n) = 1 + sum(k=2, n, isprimepower(k) && !isprime(k));  \\ A085501
    a(n) = {if (n==1, return (1)); my(p); if (isprimepower(n, &p) && !isprime(n), p, prime(n-f(n)));} \\ Michel Marcus, Jan 28 2021
    
  • Python
    from sympy import primefactors, prime, primepi, integer_nthroot
    def A085818(n): return 1 if n==1 else (f[0] if len(f:=primefactors(n))==1 and f[0]Chai Wah Wu, Aug 20 2024