cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A085933 Palindromes in A085932.

Original entry on oeis.org

1, 2, 3, 4, 242, 292, 484, 676, 18581, 20402, 20902, 40804, 60706, 81518, 1085801, 1805081, 2004002, 2009002, 4008004, 6007006, 8015108, 8105018, 100858001, 108050801, 180050081, 200040002, 200090002, 400080004, 600070006, 800151008, 801050108, 810050018
Offset: 1

Views

Author

Jason Earls and Amarnath Murthy, Jul 14 2003

Keywords

Comments

Sequence is infinite since there is no restriction on the number of zeros.
This sequence is the union of {1, 2, 3, 4}, {2*100^k + 4*10^k + 2}, {2*100^k + 9*10^k + 2}, {4*100^k + 8*10^k + 4}, {6*100^k + 7*10^k + 6}, {100^(k+1) + 8*10^(2*k-m+2) + 5*10^(k+1) + 8*10^m + 1} and {8*100^(k+1) + 10^(2*k-m+2) + 5*10^(k+1) + 10^m + 8}, where k >= 1 and 1 <= m <= k. - Jinyuan Wang, Mar 24 2020

Examples

			242 is a member because 229 + (2 + 2 + 9) = 242.
		

Crossrefs

Extensions

Example corrected by Harvey P. Dale, Sep 08 2018
More terms from Jinyuan Wang, Mar 24 2020

A085934 Numbers k such that (digits of k sorted in ascending order) + (digital product of k) is a palindrome. Or, sortdigits(k) + digitproduct(k) is a palindrome.

Original entry on oeis.org

1, 2, 3, 4, 10, 16, 20, 28, 30, 39, 40, 50, 60, 61, 70, 80, 82, 89, 90, 93, 98, 100, 101, 110, 127, 166, 172, 179, 188, 197, 200, 202, 217, 220, 236, 247, 263, 271, 274, 300, 303, 326, 330, 348, 359, 362, 366, 384, 395, 400, 404, 427, 438, 440, 445, 454, 455, 472
Offset: 1

Views

Author

Jason Earls and Amarnath Murthy, Jul 14 2003

Keywords

Examples

			82 is a term because the digits of 82 sorted in ascending order are 28, the digital product of 82 is 16, and 28 + 16 = 44, a palindrome.
		

Crossrefs

Programs

  • Mathematica
    DeleteCases[ParallelTable[If[PalindromeQ[FromDigits[Sort[IntegerDigits[k]]]+Times@@IntegerDigits[k]],k,n],{k,1,10^7}],n] (* J.W.L. (Jan) Eerland, Nov 04 2024 *)

A085935 Palindromes in A085934.

Original entry on oeis.org

1, 2, 3, 4, 101, 202, 303, 404, 454, 505, 545, 606, 616, 636, 676, 707, 808, 818, 909, 1001, 2002, 3003, 4004, 5005, 6006, 7007, 8008, 9009, 10001, 10101, 11011, 20002, 20202, 22022, 22622, 30003, 30303, 33033, 34243, 40004, 40404, 43234, 44044
Offset: 1

Views

Author

Jason Earls and Amarnath Murthy, Jul 14 2003

Keywords

Examples

			616 is a member as the digits of 616 sorted in ascending order are 166 and the digital product of 166 is 36 and 166 + 36 = 202 is a palindrome.
		

Crossrefs

Programs

  • Mathematica
    pdsQ[n_]:=Module[{ds=Sort[IntegerDigits[n]]},AllTrue[{n,FromDigits[ds]+ Times@@ds},PalindromeQ]]; Select[Range[45000],pdsQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 20 2020 *)
Showing 1-3 of 3 results.