cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A085958 Primes p such that 8p +1 and (p-1)/8 are primes.

Original entry on oeis.org

17, 137, 809, 857, 3209, 6569, 7577, 9209, 11897, 16217, 17657, 19289, 21929, 23417, 30809, 35129, 37529, 41849, 46889, 53609, 56009, 66377, 70457, 74729, 76697, 78809, 80537, 88937, 91577, 95177, 96857, 103289, 129497, 141257, 165449, 166169
Offset: 1

Views

Author

Amarnath Murthy, Jul 16 2003

Keywords

Examples

			137 is a term as (137-1)/8 = 17 and 137*8 +1 = 1097 both are primes.
		

Crossrefs

Programs

  • Mathematica
    Prime[ Select[ Range[15208], PrimeQ[ 8Prime[ # ] + 1] && PrimeQ[(Prime[ # ] - 1)/8] & ]]
    Select[Prime[Range[16000]],PrimeQ[8#+1]&&PrimeQ[(#-1)/8]&] (* Harvey P. Dale, Jan 23 2013 *)

Extensions

Edited and extended by Zak Seidov and Robert G. Wilson v, Jul 18 2003

A086476 Primes p such that 32p+1 and (p-1)/32 are both prime.

Original entry on oeis.org

1889, 8609, 11489, 25889, 32609, 46049, 67169, 98849, 99809, 107873, 120929, 124193, 128033, 139169, 142433, 157793, 167393, 168353, 196193, 208673, 210209, 241313, 288929, 295073, 308129, 311009, 324449, 354209, 377633, 396833, 403553
Offset: 1

Views

Author

Amarnath Murthy and Jason Earls, Jul 22 2003

Keywords

Examples

			1889 is a member as (1889-1)/32 = 59 and 32*1889 + 1= 60449 are both prime.
		

Crossrefs

Programs

  • Mathematica
    Prime[ Select[ Range[37063], PrimeQ[(Prime[ # ] - 1)/2^5] && PrimeQ[2^5Prime[ # ] + 1] & ]]
    Select[Prime[Range[35000]],And@@PrimeQ[{32#+1,(#-1)/32}]&] (* Harvey P. Dale, Jan 23 2013 *)

Extensions

Edited and extended by Robert G. Wilson v, Jul 26 2003

A086477 Primes p such that 128p+1 and (p-1)/128 are both prime.

Original entry on oeis.org

21377, 44417, 140417, 151169, 151937, 155777, 436097, 539009, 569729, 570497, 608129, 658817, 704897, 830849, 865409, 965249, 1000577, 1008257, 1054337, 1130369, 1214849, 1311617, 1419137, 1429889, 1556609, 1618817, 1779329
Offset: 1

Views

Author

Amarnath Murthy and Jason Earls, Jul 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Prime[ Select[ Range[141120], PrimeQ[(Prime[ # ] - 1)/2^7] && PrimeQ[2^7Prime[ # ] + 1] & ]]
    Select[Prime[Range[140000]],AllTrue[{128#+1,(#-1)/128},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 13 2019 *)

Extensions

Edited and extended by Robert G. Wilson v, Jul 26 2003

A086478 Primes p such that 512p+1 and (p-1)/512 are both prime.

Original entry on oeis.org

183809, 220673, 420353, 629249, 696833, 1772033, 1904129, 2186753, 4137473, 4930049, 5575169, 6435329, 7040513, 8355329, 9405953, 9491969, 9882113, 10112513, 10373633, 11580929, 11648513, 11725313, 13209089, 13445633
Offset: 1

Views

Author

Jason Earls and Amarnath Murthy, Jul 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Prime[ Select[ Range[957580], PrimeQ[(Prime[ # ] - 1)/512] && PrimeQ[512Prime[ # ] + 1] &]]
    Select[Prime[Range[900000]],AllTrue[{512#+1,(#-1)/512},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 13 2018 *)

Extensions

Edited and extended by Robert G. Wilson v, Jul 26 2003
Showing 1-4 of 4 results.