A085977 Number of 3's in decimal expansion of prime(n).
0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0
Offset: 1
Examples
prime(2) = 3, so a(2)=1 and prime(345) = 2333, so a(345)=3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a085977 = count3 0 . a000040 where count3 c x | d == 3 = if x < 10 then c + 1 else count3 (c + 1) x' | otherwise = if x < 10 then c else count3 c x' where (x', d) = divMod x 10 -- Reinhard Zumkeller, Apr 08 2014
-
Mathematica
DigitCount[Prime[Range[110]],10,3] (* Harvey P. Dale, Aug 05 2019 *)