cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A036527 Smallest cube containing exactly n 0's.

Original entry on oeis.org

1, 0, 140608, 1000, 4096000, 140608000, 1000000, 4096000000, 140608000000, 1000000000, 4096000000000, 140608000000000, 1000000000000, 4096000000000000, 140608000000000000, 1000000000000000, 4096000000000000000, 140608000000000000000, 1000000000000000000, 4096000000000000000000, 140608000000000000000000, 1000000000000000000000
Offset: 0

Views

Author

Keywords

Comments

a(n)^(1/3) = A048365(n) is the index of the first occurrence of n in A269250. -- For n = 3k, obviously a(n) = 10^n. The first terms for indices n = 3k+1 and n = 3k+2 equals 4096*10^3k resp. 140608*10^3k. Is there an index from where on this is no longer true? - M. F. Hasler, Feb 20 2016

Crossrefs

Cf. A036528 - A036536 for other digits 1 - 9.
Analog for squares: A036507 = A048345^2.

Programs

  • Mathematica
    nsmall = Table[Infinity, 20];
    For[i = 0, i <= 10^6, i++, n0 = Count[IntegerDigits[i^3], 0];
      If[nsmall[[n0 + 1]] > i^3, nsmall[[n0 + 1]] = i^3]];
    Cases[nsmall, ?NumberQ] (* _Robert Price, Mar 20 2020 *)

Formula

a(n) = A048365(n)^3; a(3n) = 10^(3n); a(3n+1) <= 4096*10^(3n) = (16*10^n)^3 for n>0; a(3n+2) <= 140608*10^(3n) = (52*10^n)^3, with equality for all known terms. - M. F. Hasler, Feb 20 2016

Extensions

Extended to a(0) = 1 and three lines of data completed by M. F. Hasler, Feb 20 2016

A086017 Number of 9's in decimal expansion of n^2.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Jason Earls, Jul 07 2003

Keywords

Crossrefs

Cf. 0's A086008, 1's A086009, 2's A086010, 3's A086011, 4's A086012, 5's A086013, 6's A086014, 7's A086015, 8's A086016.
Cf. A269249 for the n^3 analog.

Programs

A269250 Number of times the digit 0 appears in the decimal expansion of n^3.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 1, 1, 0, 0, 0, 1, 1, 0, 3, 0, 2, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 2, 0, 0, 0, 2, 0, 1, 3, 0, 0, 1, 1, 0, 0, 0, 0, 1, 3, 0, 0, 0, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 1, 0, 0, 0, 0, 1, 6
Offset: 0

Views

Author

M. F. Hasler, Feb 20 2016

Keywords

Comments

The cubes corresponding to the first occurrence of 1, 2, 3, ... are listed in A036527, i.e., A048365(n) = A036527(n)^(1/3) is the index of the first occurrence of n.

Examples

			1^3 = 1, 2^3 = 8, 3^3 = 27, 4^3 = 64, ..., 9^3 = 729 all have a(1) = a(2) = ... = a(9) = 0 digits '0'.
0^3 = 0 has a(0) = 1 digit '0'.
10^3 = 1000 has a(10) = 3 digits '0'.
		

Crossrefs

Analog for the other digits 1, ..., 9: A269241, A269242, A269243, A269244, A269245, A269246, A269247, A269248, A269249.
Analog for squares: A086008 (digit 0), and A086009 - A086017 for digits 1 - 9.

Programs

  • Maple
    seq(numboccur(0, convert(n^3,base,10)), n=0..100); # Robert Israel, Feb 21 2016
  • Mathematica
    Table[DigitCount[n^3, 10, 0], {n, 0, 100}] (* Robert Price, Mar 21 2020 *)
  • PARI
    A269250(n)=!n+#select(t->!t,digits(n^3))

A086009 Number of 1's in decimal expansion of n^2.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 1, 1, 2
Offset: 0

Views

Author

Jason Earls, Jul 07 2003

Keywords

Examples

			4^2 = 16, so a(4)=1 and 11^2 = 121, so a(11)=2.
		

Crossrefs

Cf. 0's A086008, 2's A086010, 3's A086011, 4's A086012, 5's A086013, 6's A086014, 7's A086015, 8's A086016, 9's A086017.
Cf. A269241 for the n^3 analog.

Programs

A086016 Number of 8's in decimal expansion of n^2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Jason Earls, Jul 07 2003

Keywords

Crossrefs

Cf. 0's A086008, 1's A086009, 2's A086010, 3's A086011, 4's A086012, 5's A086013, 6's A086014, 7's A086015, 9's A086017.
Cf. A269248 for the n^3 analog.

Programs

A269241 Number of times the digit 1 appears in the decimal expansion of n^3.

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 2, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 2, 0, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 3, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 1, 2, 1, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0
Offset: 0

Views

Author

M. F. Hasler, Feb 20 2016

Keywords

Comments

The cubes corresponding to the first occurrence of 1, 2, 3, ... are listed in A036528, i.e., A036528(n)^(1/3) = A048366(n) is the index of the first occurrence of n.

Examples

			0^3 = 0 has a(0) = 0 digits '1'.
1^3 = 1 has a(1) = 1 digit '1'.
2^3 = 8 has a(2) = 0 digits '1'.
3^3 = 27 has a(3) = 0 digits '1'.
4^3 = 64 has a(4) = 0 digits '1'.
5^3 = 125 has a(5) = 1 digit '1'.
11^3 = 1331 is the smallest cube to have a(11) = 2 digits '1'.
		

Crossrefs

Analog for the other digits 0, 2, ..., 9: A269250, A269242, A269243, A269244, A269245, A269246, A269247, A269248, A269249.
Analog for squares: A086009 (digit 1), and A086008 - A086017 for digits 0 - 9.

Programs

  • Mathematica
    Table[DigitCount[n^3, 10, 1], {n, 0, 99}] (* Alonso del Arte, Feb 20 2016 *)
  • PARI
    A269241(n)=#select(t->t==1,digits(n^3))

A269242 Number of times the digit 2 appears in the decimal expansion of n^3.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

M. F. Hasler, Feb 20 2016

Keywords

Comments

The cubes corresponding to the first occurrence of 1, 2, 3, ... are listed in A036529, i.e., A036529(n)^(1/3) = A048367(n) is the index of the first occurrence of n.

Examples

			0^3 = 0 has a(0) = 0 digits '2'.
1^3 = 1 has a(1) = 0 digits '2'.
2^3 = 8 has a(2) = 0 digits '2'.
3^3 = 27 has a(3) = 1 digits '2'.
4^3 = 64 has a(4) = 0 digits '2'.
5^3 = 125 has a(5) = 1 digit '2'.
28^3 = 21952 is the least cube which has a(28) = 2 digits '2'.
		

Crossrefs

Analog for the other digits 0, 1, ..., 9: A269250, A269241, A269242, A269243, A269244, A269245, A269246, A269247, A269248, A269249.
Analog for squares: A086010 (digit 2), and A086008 - A086017 for digits 0 - 9.

Programs

  • Magma
    [Multiplicity(Intseq(n^3),2): n in [0..100]]; // Marius A. Burtea, Jan 26 2020
  • Maple
    seq(numboccur(2,convert(n^3,base,10)),n=0..100); # Robert Israel, Jan 26 2020
  • Mathematica
    Table[DigitCount[n^3, 10, 2], {n, 0, 100}] (* Robert Price, Mar 21 2020 *)
  • PARI
    A269242(n)=#select(t->t==2,digits(n^3))
    

A269243 Number of times the digit 3 appears in the decimal expansion of n^3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 2, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 2, 2, 1, 2, 1, 2, 1, 0, 0, 1, 2, 0, 2, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

M. F. Hasler, Feb 20 2016

Keywords

Comments

The cubes corresponding to the first occurrence of 1, 2, 3, ... are listed in A036530, i.e., A036530(n)^(1/3) = A048368(n) is the index of the first occurrence of n.

Examples

			0^3 = 0, 1^3 = 1, 2^3 = 8, 3^3 = 27, 4^3 = 64, 5^3 = 125 and 6^3 = 216 all have a(0) = a(1) = ... = a(6) = 0 digits '3'.
7^3 = 343 has a(7) = 2 digits '3'.
		

Crossrefs

Analog for the other digits 0, 1, ..., 9: A269250, A269241, A269242, A269243, A269244, A269245, A269246, A269247, A269248, A269249.
Analog for squares: A086011 (digit 3), and A086008 - A086017 for digits 0 - 9.

Programs

  • Mathematica
    Table[DigitCount[n^3, 10, 3], {n, 0, 100}] (* Robert Price, Mar 21 2020 *)
  • PARI
    A269243(n)=#select(t->t==3,digits(n^3))

A269244 Number of times the digit 4 appears in the decimal expansion of n^3.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 1, 1, 1, 2, 1, 0, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1
Offset: 0

Views

Author

M. F. Hasler, Feb 20 2016

Keywords

Comments

The cubes corresponding to the first occurrence of 1, 2, 3, ... are listed in A036531, i.e., A036531(n)^(1/3) = A048369(n) is the index of the first occurrence of n.

Examples

			0^3 = 0, 1^3 = 1, 2^3 = 8 and 3^3 = 27 all have a(0) = a(1) = a(2) = a(3) = 0 digits '4'.
4^3 = 64 has a(4) = 1 digit '4'.
14^3 = 2744 has a(14) = 2 digits '4'.
		

Crossrefs

Analog for the other digits 0, 1, ..., 9: A269250, A269241, A269242, A269243, A269244, A269245, A269246, A269247, A269248, A269249.
Analog for squares: A086012 (digit 4), and A086008 - A086017 for digits 0 - 9.

Programs

  • Mathematica
    Table[DigitCount[n^3, 10, 4], {n, 0, 100}] (* Robert Price, Mar 21 2020 *)
  • PARI
    A269244(n)=#select(t->t==4,digits(n^3))

A269245 Number of times the digit 5 appears in the decimal expansion of n^3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 2, 2, 0, 1, 1, 2, 1, 1, 1, 1, 2, 0, 0, 0, 2, 0, 1, 1, 2
Offset: 0

Views

Author

M. F. Hasler, Feb 20 2016

Keywords

Comments

The cubes corresponding to the first occurrence of 1, 2, 3, ... are listed in A036532, i.e., A036532(n)^(1/3) = A048370(n) is the index of the first occurrence of n.

Examples

			0^3 = 0, 1^3 = 1, 2^3 = 8 and 3^3 = 27 all have a(0) = a(1) = a(2) = a(3) = 0 digits '5'.
5^3 = 125 has a(5) = 1 digit '5'.
		

Crossrefs

Analog for the other digits 0, 1, ..., 9: A269250, A269241, A269242, A269243, A269244, A269245, A269246, A269247, A269248, A269249.
Analog for squares: A086013 (digit 5), and A086008 - A086017 for digits 0 - 9.

Programs

  • Mathematica
    Table[DigitCount[n^3, 10, 5], {n, 0, 100}] (* Robert Price, Mar 21 2020 *)
  • PARI
    A269245(n)=#select(t->t==5,digits(n^3))
Showing 1-10 of 20 results. Next