cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086021 a(n) = Sum_{i=1..n} C(i+2,3)^3.

Original entry on oeis.org

1, 65, 1065, 9065, 51940, 227556, 820260, 2548260, 7040385, 17688385, 41082041, 89310585, 183506960, 359122960, 673554960, 1216893456, 2126746665, 3608290665, 5960927665, 9613191665, 15167828676, 23459298500, 35626298500, 53202298500, 78227501625, 113386110201
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n^2*(-36 + 300*n + 1535*n^2 + 2700*n^3 + 2442*n^4 + 1260*n^5 + 375*n^6 + 60*n^7 + 4*n^8)/8640: n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Mathematica
    Table[n^2*(-36 + 300*n + 1535*n^2 + 2700*n^3 + 2442*n^4 + 1260*n^5 + 375*n^6 + 60*n^7 + 4*n^8)/8640, {n, 1, 30}] (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    Vec(-x*(x^6+54*x^5+405*x^4+760*x^3+405*x^2+54*x+1)/(x-1)^11 + O(x^100)) \\ Colin Barker, May 02 2014
    
  • PARI
    for(n=1,30, print1(n^2*(-36 + 300*n + 1535*n^2 + 2700*n^3 + 2442*n^4 + 1260*n^5 + 375*n^6 + 60*n^7 + 4*n^8)/8640, ", ")) \\ G. C. Greubel, Nov 22 2017
    

Formula

a(n) = (C(n+3, 4)/1)*(1 +12*C(n-1, 1) +46*C(n-1, 2) +84*C(n-1, 3) +81*C(n-1, 4) +40*C(n-1, 5) +8*C(n-1, 6)). - Edited by Colin Barker, May 02 2014
G.f.: -x*(x^6 +54*x^5 +405*x^4 +760*x^3 +405*x^2 +54*x +1) / (x-1)^11. - Colin Barker, May 02 2014
a(n) = n^2*(-36 + 300*n + 1535*n^2 + 2700*n^3 + 2442*n^4 + 1260*n^5 + 375*n^6 + 60*n^7 + 4*n^8)/8640. - G. C. Greubel, Nov 22 2017