A086230 Decimal expansion of probability that a random walk on a 3-D lattice returns to the origin.
3, 4, 0, 5, 3, 7, 3, 2, 9, 5, 5, 0, 9, 9, 9, 1, 4, 2, 8, 2, 6, 2, 7, 3, 1, 8, 4, 4, 3, 2, 9, 0, 2, 8, 9, 6, 7, 1, 0, 6, 0, 8, 2, 1, 7, 1, 2, 4, 3, 0, 2, 0, 9, 7, 7, 6, 3, 2, 3, 6, 1, 0, 5, 3, 7, 7, 7, 9, 1, 9, 6, 9, 4, 5, 8, 9, 6, 2, 3, 8, 4, 6, 4, 2, 5, 2, 8, 0, 8, 1, 8, 8, 9, 0, 5, 7, 1, 3, 0, 9, 9, 4
Offset: 0
Examples
0.340537329550999142826273184432902896710608217124302097763236105377791969...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 322-331.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- W. H. McCrea and F. J. W. Whipple, Random Paths in Two and Three Dimensions, Proceedings of the Royal Society of Edinburgh, Vol. 60, No. 3 (1940), pp. 281-298. See p. 297.
- Georg Pólya, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz, Mathematische Annalen, Vol. 84, No. 1-2 (1921), pp. 149-160.
- Eric Weisstein's World of Mathematics, Pólya's Random Walk Constants.
Programs
-
Magma
C := ComplexField(); 1 - (16*Sqrt(2/3)*Pi(C)^3)/(Gamma(1/24)* Gamma(5/24)*Gamma(7/24)*Gamma(11/24)); // G. C. Greubel, Jan 25 2018
-
Mathematica
RealDigits[1 - (16*Sqrt[2/3]*Pi^3) / (Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24]), 10, 102] // First (* Jean-François Alcover, Feb 08 2013, after Eric W. Weisstein *)
-
PARI
1-32*Pi^3/sqrt(6)/gamma(1/24)/gamma(5/24)/gamma(7/24)/gamma(11/24) \\ Charles R Greathouse IV, Jul 22 2013
Formula
Equals 1 - (16*Sqrt(2/3)*Pi^3)/(Gamma(1/24)* Gamma(5/24)*Gamma(7/24)* Gamma(11/24)). - G. C. Greubel, Jan 25 2018
Equals 1 - 1/A086231. - Amiram Eldar, Aug 28 2020
Comments