cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086230 Decimal expansion of probability that a random walk on a 3-D lattice returns to the origin.

Original entry on oeis.org

3, 4, 0, 5, 3, 7, 3, 2, 9, 5, 5, 0, 9, 9, 9, 1, 4, 2, 8, 2, 6, 2, 7, 3, 1, 8, 4, 4, 3, 2, 9, 0, 2, 8, 9, 6, 7, 1, 0, 6, 0, 8, 2, 1, 7, 1, 2, 4, 3, 0, 2, 0, 9, 7, 7, 6, 3, 2, 3, 6, 1, 0, 5, 3, 7, 7, 7, 9, 1, 9, 6, 9, 4, 5, 8, 9, 6, 2, 3, 8, 4, 6, 4, 2, 5, 2, 8, 0, 8, 1, 8, 8, 9, 0, 5, 7, 1, 3, 0, 9, 9, 4
Offset: 0

Views

Author

Eric W. Weisstein, Jul 12 2003

Keywords

Comments

Pólya (1921) proved that this constant is < 1. McCrea and Whipple (1940) evaluated it by 0.34. - Amiram Eldar, Aug 28 2020

Examples

			0.340537329550999142826273184432902896710608217124302097763236105377791969...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 322-331.

Crossrefs

Programs

  • Magma
    C := ComplexField(); 1 - (16*Sqrt(2/3)*Pi(C)^3)/(Gamma(1/24)* Gamma(5/24)*Gamma(7/24)*Gamma(11/24)); // G. C. Greubel, Jan 25 2018
  • Mathematica
    RealDigits[1 - (16*Sqrt[2/3]*Pi^3) / (Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24]), 10, 102] // First (* Jean-François Alcover, Feb 08 2013, after Eric W. Weisstein *)
  • PARI
    1-32*Pi^3/sqrt(6)/gamma(1/24)/gamma(5/24)/gamma(7/24)/gamma(11/24) \\ Charles R Greathouse IV, Jul 22 2013
    

Formula

Equals 1 - (16*Sqrt(2/3)*Pi^3)/(Gamma(1/24)* Gamma(5/24)*Gamma(7/24)* Gamma(11/24)). - G. C. Greubel, Jan 25 2018
Equals 1 - 1/A086231. - Amiram Eldar, Aug 28 2020