cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086299 a(n) = if n is 7-smooth then 1 else 0: characteristic function of 7-smooth numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 15 2003

Keywords

Crossrefs

Programs

  • Haskell
    a086299 = fromEnum . (<= 7) . a006530  -- Reinhard Zumkeller, Apr 01 2012
  • Mathematica
    Table[If[Max[Transpose[FactorInteger[n]][[1]]]<11,1,0],{n,110}] (* Harvey P. Dale, Oct 08 2013 *)
    smooth7Q[n_] := n == Times@@({2, 3, 5, 7}^IntegerExponent[n, {2, 3, 5, 7}]);
    a[n_] := Boole[smooth7Q[n]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 17 2021 *)

Formula

Multiplicative with: a(p) = if p<=7 then 1 else 0, p prime.
a(A002473(n)) = 1; a(A068191(n)) = 0. - Reinhard Zumkeller, Apr 01 2012
Dirichlet g.f.: 1/((1-2^(-s))*(1-3^(-s))*(1-5^(-s))*(1-7^(-s))). - Amiram Eldar, Dec 27 2022