A086312 Decimal expansion of constant appearing in the variance for inserting in a digital tree.
7, 6, 3, 0, 1, 4, 1, 8, 7, 1, 1, 1, 1, 4, 8, 3, 7, 0, 3, 4, 6, 6, 4, 4, 1, 1, 9, 4, 0, 6, 0, 1, 6, 8, 4, 1, 4, 2, 4, 9, 9, 1, 3, 7, 5, 2, 6, 2, 6, 2, 9, 7, 4, 2, 7, 6, 8, 9, 7, 9, 1, 0, 9, 0, 1, 7, 5, 7, 3, 2, 1, 9, 9, 9, 3, 1, 7, 7, 2, 1, 0, 0, 0, 7, 6, 2, 0, 2, 0, 8, 1, 1, 1, 2, 8, 7, 2, 3, 4, 5, 8, 3
Offset: 0
Examples
0.76301418711114837034664411940601684142499137526...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.14 Digital Search Tree Constants, p. 356.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Tree Searching
Crossrefs
Cf. A086311.
Programs
-
Mathematica
digits = 102; alpha = NSum[1/(2^k-1), {k, 1, 500}, NSumTerms -> 100, WorkingPrecision -> digits+10]; beta = NSum[1/(2^k-1)^2, {k, 1, 500}, NSumTerms -> 100, WorkingPrecision -> digits+10]; RealDigits[1/12 + Pi^2/(6*Log[2]^2) - alpha - beta, 10, digits] // First
Formula
1/12 + Pi^2/(6*log(2)^2) - alpha - beta, where gamma is Euler's constant, alpha is the Erdős-Borwein constant (A065442) and beta is A065443. - Jean-François Alcover, Jul 29 2014, after Steven Finch