cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086311 Decimal expansion of constant appearing in the variance for searching in a digital tree.

Original entry on oeis.org

2, 8, 4, 4, 3, 8, 3, 1, 6, 8, 1, 1, 6, 7, 5, 6, 1, 6, 8, 2, 1, 6, 2, 2, 5, 7, 2, 3, 1, 4, 1, 0, 0, 8, 2, 6, 6, 4, 8, 9, 0, 3, 8, 5, 3, 0, 9, 0, 8, 7, 1, 0, 7, 7, 4, 3, 9, 5, 5, 3, 7, 5, 4, 6, 6, 6, 3, 6, 8, 1, 9, 0, 2, 3, 9, 4, 2, 4, 1, 2, 7, 7, 7, 4, 8, 8, 2, 1, 9, 5, 7, 9, 1, 7, 1, 8, 4, 8, 8, 0, 2, 5
Offset: 1

Views

Author

Eric W. Weisstein, Jul 15 2003

Keywords

Examples

			2.84438316811675616821622572314100826648903853090871...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.14 Digital Search Tree Constants, p. 356.

Crossrefs

Cf. A086312.

Programs

  • Mathematica
    digits = 102; alpha =  NSum[1/(2^k-1), {k, 1, 500}, NSumTerms -> 100, WorkingPrecision -> digits+10]; beta = NSum[1/(2^k-1)^2, {k, 1, 500}, NSumTerms -> 100, WorkingPrecision -> digits+10]; RealDigits[1/12 + (Pi^2+6)/(6*Log[2]^2) - alpha - beta, 10, digits] // First

Formula

1/12 + (Pi^2+6)/(6*log(2)^2) - alpha - beta, where gamma is Euler's constant, alpha is the Erdős-Borwein constant (A065442) and beta is A065443. - Jean-François Alcover, Jul 29 2014, after Steven Finch

A245675 Decimal expansion of 'nu', a coefficient related to the variance for searching corresponding to patricia tries.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 7, 4, 1, 2, 5, 7, 5, 7, 3, 6, 1, 1, 0, 2, 2, 8, 7, 1, 9, 6, 1, 0, 6, 4, 6, 6, 7, 2, 8, 7, 4, 2, 9, 7, 7, 3, 2, 0, 4, 8, 1, 9, 6, 5, 4, 8, 4, 4, 3, 8, 4, 4, 1, 7, 1, 8, 2, 5, 6, 4, 0, 5, 3, 0, 4, 2, 8, 8, 5, 0, 9, 1, 3, 8, 8, 5, 5, 8, 6, 1, 9, 3, 5, 2, 4, 9, 7, 6
Offset: 1

Views

Author

Jean-François Alcover, Jul 29 2014

Keywords

Comments

Curiously, this constant is very close to 1 (up to a 10^-12 gap). This can be explained via the Dedekind eta function, after Steven Finch.

Examples

			1.000000000001237412575736110228719610646672874297732...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.11 Feller's coin tossing p. 341 and Section 5.14 Digital Search Tree Constants p. 356.

Crossrefs

Programs

  • Mathematica
    digits = 103; sigma = NSum[(-1)^k/(k*(2^k-1)), {k, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+10]; RealDigits[1/12 + Pi^2/(6*Log[2]^2) + 2*sigma/Log[2], 10, digits] // First

Formula

nu = 1/12 + Pi^2/(6*log(2)^2) + 2*sigma/log(2), where sigma = sum_{k=1..infinity} (-1)^k/(k*(2^k-1)).
Showing 1-2 of 2 results.