cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086318 Decimal expansion of asymptotic constant eta for counts of weakly binary trees.

Original entry on oeis.org

7, 9, 1, 6, 0, 3, 1, 8, 3, 5, 7, 7, 5, 1, 1, 8, 0, 7, 8, 2, 3, 6, 2, 8, 4, 5, 5, 7, 2, 3, 2, 6, 8, 2, 2, 4, 0, 7, 1, 7, 4, 2, 4, 1, 8, 0, 9, 0, 7, 8, 9, 4, 6, 7, 3, 1, 2, 3, 0, 7, 8, 3, 0, 9, 9, 2, 2, 9, 0, 4, 4, 1, 5, 0, 3, 8, 9, 3, 2, 9, 2, 5, 5, 4, 4, 6, 6, 7, 9, 0, 8, 6, 8, 4, 0, 4, 6, 3, 0, 3, 8, 3
Offset: 0

Views

Author

Eric W. Weisstein, Jul 15 2003

Keywords

Examples

			0.791603183577511807823628455723268224071742418090789...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.6, p. 297.

Crossrefs

Programs

  • Mathematica
    digits = 102; c[0] = 2; c[n_] := c[n] = c[n - 1]^2 + 2; eta[n_Integer] := eta[n] = 1/2 * Sqrt[c[n]^2^(-n)/Pi] * Sqrt[3 + Sum[1/Product[c[j], {j, 1, k}], {k, 1, n}]]; eta[5]; eta[n = 10]; While[RealDigits[eta[n], 10, digits] != RealDigits[eta[n - 5], 10, digits], n = n + 5]; RealDigits[eta[n], 10, digits] // First (* Jean-François Alcover, May 27 2014 *)

Formula

Equals lim_{n->oo} A001190(n)*n^(3/2)/A086317^(n-1). - Vaclav Kotesovec, Apr 19 2016