A086330 a(n) = Sum_{m >= 2} m! mod n.
0, 2, 4, 7, 2, 18, 8, 17, 12, 43, 8, 73, 32, 17, 24, 113, 26, 159, 12, 32, 76, 203, 8, 112, 164, 89, 60, 334, 32, 496, 88, 164, 232, 67, 44, 706, 292, 164, 32, 863, 74, 874, 164, 62, 456, 1097, 56, 291, 162, 317, 268, 1124, 116, 142, 88, 425, 566, 1560, 32, 2033, 930
Offset: 2
Examples
a(7) = 2! mod 7 + 3! mod 7 + 4! mod 7 + 5! mod 7 + 6! mod 7 + 7! mod 7 + 8! mod 7 + . . . = 2 mod 7 + 6 mod 7 + 24 mod 7 + 120 mod 7 + 720 mod 7 + 5040 mod 7 + 40320 mod 7 + ... = 2 + 6 + 3 + 1 + 6 + (all further values are zero) = 18.
Crossrefs
Cf. A062169.
Programs
-
PARI
a(n) = sum(m=2, n, m! % n) \\ Michel Marcus, Jul 23 2013
-
Python
def A086330(n): a, c = 0, 1 for m in range(2,n): c = c*m%n if c==0: break a += c return a # Chai Wah Wu, Apr 16 2024
Formula
a(n) = -1 + Sum_{k=1..n} A062169(n, k). - Vladeta Jovovic, Sep 06 2003
Extensions
Corrected and extended by Vladeta Jovovic, Sep 06 2003
Comments