A086360 The n-th primorial number reduced modulo 9.
1, 2, 6, 3, 3, 6, 6, 3, 3, 6, 3, 3, 3, 6, 6, 3, 6, 3, 3, 3, 6, 6, 6, 3, 6, 6, 3, 3, 6, 6, 3, 3, 6, 3, 3, 6, 6, 6, 6, 3, 6, 3, 3, 6, 6, 3, 3, 3, 3, 6, 6, 3, 6, 6, 3, 6, 3, 6, 6, 6, 3, 3, 6, 6, 3, 3, 6, 6, 6, 3, 3, 6, 3, 3, 3, 3, 6, 3, 3, 6, 6, 3, 3, 6, 6, 6, 3, 6
Offset: 0
Examples
For n=7, 7th primorial = 510510, list of iterated digit sums is {510510,12,3}, thus a(7)=3.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..19683 (terms 1..10000 from Nathaniel Johnston)
- Index entries for sequences related to primorial numbers
Crossrefs
Programs
-
Maple
A086360 := proc(n) option remember: if(n=1)then return 2:fi: return ithprime(n)*procname(n-1) mod 9: end: seq(A086360(n), n=1..100); # Nathaniel Johnston, May 04 2011
-
Mathematica
sud[x_] := Apply[Plus, DeleteCases[IntegerDigits[x], 0]] q[x_] := Apply[Times, Table[Prime[w], {w, 1, x}]] Table[FixedPoint[sud, q[w]], {w, 1, 128}]
-
PARI
up_to = 19683; A086360list(up_to_n) = { my(m=9, v=vector(1+up_to_n), pr=1); v[1] = 1; for(n=1, up_to_n, pr = (pr*prime(n))%m; v[1+n] = pr); (v); }; v086360 = A086360list(up_to); A086360(n) = v086360[1+n]; \\ Antti Karttunen, Nov 14 2024
Extensions
Term a(0)=1 prepended, old definition moved to comments and replaced with one of the formulas, keyword:base removed because not really base-dependent - Antti Karttunen, Nov 14 2024
Comments