A377876 The n-th primorial number reduced modulo 27.
1, 2, 6, 3, 21, 15, 6, 21, 21, 24, 21, 3, 3, 15, 24, 21, 6, 3, 21, 3, 24, 24, 6, 12, 15, 24, 21, 3, 24, 24, 12, 12, 6, 12, 21, 24, 6, 24, 24, 12, 24, 3, 3, 6, 24, 3, 3, 12, 3, 6, 24, 3, 15, 24, 3, 15, 3, 24, 24, 6, 12, 21, 24, 24, 12, 3, 6, 15, 6, 3, 21, 15, 12, 3, 12, 12, 6, 12, 12, 6, 24, 12, 3, 24, 24, 6, 12, 15
Offset: 0
Keywords
Links
Programs
-
Maple
R:= 1: p:= 1: v:= 1: for i from 1 to 100 do p:= nextprime(p); v:= p*v mod 27; R:= R,v; od: R; # Robert Israel, Nov 12 2024
-
Mathematica
Mod[FoldList[Times,1,Prime[Range[87]]],27] (* James C. McMahon, Nov 12 2024 *)
-
PARI
A002110(n) = prod(i=1,n,prime(i)); A377876(n) = (A002110(n)%27);
-
PARI
up_to = 105; A377876list(up_to_n) = { my(m=27, v=vector(1+up_to_n), pr=1); v[1] = 1; for(n=1, up_to_n, pr *= Mod(prime(n),m); v[1+n] = lift(pr)); (v); }; v377876 = A377876list(up_to); A377876(n) = v377876[1+n];
-
Python
from functools import reduce from sympy import primerange, prime def A377876(n): return reduce(lambda x,y:x*y%27,primerange(prime(n)+1)) if n else 1 # Chai Wah Wu, Nov 12 2024
Formula
a(n) = A002110(n) mod 27.