A086220
Numbers n such that p=n^2+2, p+2, p+6 and p+8 are four consecutive primes.
Original entry on oeis.org
3, 57, 32397, 54813, 61827, 62493, 98487, 98853, 119937, 213237, 254577, 306123, 322263, 328803, 438453, 603603, 619263, 656733, 671013, 675807, 821247, 875277, 1051173, 1121133, 1163697, 1230783, 1234317, 1337763, 1382223, 1388103, 1455927, 1538517, 1581237
Offset: 1
A086509
Numbers n such that p=n^2+2, p+2, p+6, p+8 and p+12 are five consecutive primes.
Original entry on oeis.org
3, 32397, 213237, 254577, 1587597, 2305167, 3440307, 5622903, 6067893, 6895953, 7424157, 8304927, 8917707, 8936367
Offset: 1
John F. Brennen gives first 19575 terms of this sequence, n <= 165294372813.
A177173
Numbers n such that n^2 + 3^k is prime for k = 1, 2, 3.
Original entry on oeis.org
2, 10, 38, 52, 350, 542, 1102, 1460, 1522, 1732, 2510, 2642, 2768, 3692, 4592, 4658, 4690, 7238, 8180, 8320, 8960, 11392, 13468, 14920, 15908, 16600, 16832, 17878, 18820, 19100, 21532, 22060, 23240, 23842, 23968, 24622, 26428, 26638, 27170
Offset: 1
Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 04 2010
2^2 + 3 = 7 = prime(4), 2^2 + 3^2 = 13 = prime(6), 2^2 + 3^3 = 31 = prime(11), 2 is first term.
10^2 + 3 = 103 = prime(27), 10^2 + 3^2 = 109 = prime(29), 10^2 + 3^3 = 127 = prime(31), 10 is 2nd term.
Curiously k=0: 10^2 + 3^0 = 101 = prime(26), k=4: 10^2 + 3^4 = 181 = prime(42), necessarily LSD for such n is e = 0, k= 5: 10^2 + 3^5 = 7^3, k=6: 10^2 + 3^6 = 829 = prime(145), 10^2 + 3^7 = 2287 = prime(340), 10^2 + 3^8 = 6661 = prime(859)
n = 8180, primes for exponents k = 0, 1, 2, 3 and 4: p=66912403=prime(3946899), q=66912409=prime(3946900), r=66912427=prime(3946902), n^2+3^0=66912401=prime(3946898) and n^2+3^4=66912481=prime(3946905).
n = 8960, primes for exponents k = 1, 2, 3, 4, 5 and 6: p=80281603=prime(4684862), q=80281609=prime(4684863), r=80281627=prime(4684865), n^2+3^4=80281681=prime(4684868), n^2+3^5=80281843=prime(4684877), n^2+3^5=80282329=prime(4684904).
- F. Padberg, Zahlentheorie und Arithmetik, Spektrum Akademie Verlag, Heidelberg-Berlin 1999.
- M. du Sautoy, Die Musik der Primzahlen: Auf den Spuren des groessten Raetsels der Mathematik, Deutscher Taschenbuch Verlag, 2006.
A178639
Numbers m such that all three values m^2 + 13^k, k = 1, 2, 3, are prime.
Original entry on oeis.org
10, 12, 200, 268, 340, 418, 488, 530, 838, 840, 1102, 1720, 1830, 2240, 2410, 2768, 3148, 3202, 3318, 3322, 3958, 4162, 4610, 5080, 5672, 5700, 5722, 5870, 6178, 6302, 6480, 7490, 8130, 8262, 8888, 9132, 9602, 9618, 10638
Offset: 1
Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 31 2010
m=10 is in the sequence because 10^2 + 13 = 113 = prime(30), 10^2 + 13^2 = 269 = prime(57), 10^2 + 13^3 = 2297 = prime(342).
m=8888 is in the sequence because 8888^2 + 13 = 78996557 = prime(4614261), 8888^2 + 13^2 = 78996713 = prime(4614269), 8888^2 + 13^3 = 78998741 = prime(4614379).
m=6480 yields a prime 6480^2 + 13^k even for k=0.
m=7490 yields a prime 7490^2 + 13^k even for k=0 and k=4.
- B. Bunch: The Kingdom of Infinite Number: A Field Guide, W. H. Freeman, 2001.
- R. Courant, H. Robbins: What Is Mathematics? An Elementary Approach to Ideas and Methods, Oxford University Press, 1996.
- G. H. Hardy, E. M. Wright, E. M., An Introduction to the Theory of Numbers (5th edition), Oxford University Press, 1980.
Showing 1-4 of 4 results.
Comments