A086415 Maximal exponent in prime factorization of 3-smooth numbers.
0, 1, 1, 2, 1, 3, 2, 2, 4, 2, 3, 3, 5, 2, 4, 3, 6, 3, 4, 5, 3, 7, 4, 4, 6, 3, 5, 8, 5, 4, 7, 4, 5, 9, 6, 4, 6, 8, 5, 5, 10, 7, 4, 6, 9, 6, 5, 11, 7, 8, 5, 6, 10, 7, 5, 12, 7, 9, 6, 6, 11, 8, 8, 5, 13, 7, 10, 7, 6, 12, 8, 9, 6, 14, 7, 11, 9, 8, 6, 13, 8, 10, 7, 15, 7, 12, 9, 9, 6, 14, 8, 11, 10
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^20: # to include all 3-smooth numbers <= N S:= [seq(seq([2^i*3^j,max(i,j)], j=0..floor(log[3](N/2^i))),i=0..floor(log[2](N)))]: map(p -> p[2], sort(S,(a,b) -> a[1]Robert Israel, Aug 10 2014
-
Mathematica
M = 10^5; (* M = 10^5 gives 101 terms *) S = Flatten[Table[Table[{2^i*3^j, Max[i, j]}, {j, 0, Floor[Log[3, M/2^i]]}], {i, 0, Floor[Log[2, M]]}], 1] // Sort; S[[All, 2]] (* Jean-François Alcover, Mar 03 2019, after Robert Israel *)
Comments