cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A215723 Maximum determinant of an n X n circulant (1,-1)-matrix.

Original entry on oeis.org

1, 0, 4, 16, 48, 128, 512, 2304, 6912, 22528, 273408, 2097152, 14929920, 50331648, 390905856, 1644167168, 12279939072, 69660573696, 865782202368, 5566277615616, 41248865910784, 215055782117376, 2385859554836480, 25783171861708800, 146322302697472000, 1107244165160239104, 11063259546716733440, 76787161889935196160
Offset: 1

Views

Author

W. Edwin Clark, Aug 22 2012

Keywords

Comments

a(n) is divisible by 2^(n-1), see A215897. [Joerg Arndt, Aug 26 2012]

References

  • Warren D. Smith, Posting to the Math Fun Mailing List August 18, 2012.

Crossrefs

Cf. A003433, A086432 (same for circulant (0,1) matrices), A215724 (same for (1,-1)-Toeplitz matrices).
Cf. A215897 ( =a(n)/2^(n-1) ).

Programs

  • Maple
    a:=proc(n)
    local T, b, U, M,d,r;
    T:= combinat:-cartprod([seq({-1, 1}, j = 1 .. n)]);
    b:= 0;
    while not T[finished] do
       U := T[nextvalue]();
       M := Matrix(n, shape = Circulant[U]);
       d:= LinearAlgebra:-Determinant(M):
       if d > b then b := d; end if;
    end do;
    return b;
    end proc:
  • PARI
    a(n)={my(m=0); for(p=n>1, 2^(n-1)-1, m=max(m, matdet(matrix(n, n, i, j, 1-2*bittest(p, (i-j)%n))))); m} /* For illustrative purpose only: becomes slow for n>15 */ /* M. F. Hasler, Aug 25 2012 */

Extensions

a(16)-a(22) from Joerg Arndt, Aug 25 2012
a(23)-a(28) (as calculated by Warren Smith) from W. Edwin Clark, Sep 02 2012

A215724 Maximum absolute value of determinant of n X n (1,-1)-Toeplitz matrix.

Original entry on oeis.org

1, 2, 4, 16, 48, 160, 576, 2560, 12288, 73728, 327680, 2097152, 14929920, 68853760, 390905856, 2363752448
Offset: 1

Views

Author

W. Edwin Clark, Aug 22 2012

Keywords

Examples

			a(2) = 2:
    1  1
   -1  1
a(3) = 4:
    1  1  1
   -1  1  1
    1 -1  1
a(6) = 160
    1 -1  1  1  1  1
   -1  1 -1  1  1  1
   -1 -1  1 -1  1  1
   -1 -1 -1  1 -1  1
    1 -1 -1 -1  1 -1
    1  1 -1 -1 -1  1
		

References

  • Warren D. Smith, Posting to the Math Fun Mailing List, August 18, 2012.

Crossrefs

Cf. A086432 (same for circulant (0,1) matrices), A215723 (same for circulant (+1,-1) matrices).

Programs

  • Maple
    a:=proc(n)
    local T, b, U, M,d,r;
    T:= combinat:-cartprod([seq({-1, 1}, j = 1..2*n-1)]);
    b:= 0;
    while not T[finished] do
       U := T[nextvalue]();
       M := LinearAlgebra:-ToeplitzMatrix(U,n);
       d:= abs(LinearAlgebra:-Determinant(M)):
       if d > b then b := d; end if;
    end do;
    return b;
    end proc:

Extensions

a(15) from Lucas A. Brown, Sep 06 2022
a(16) from Lucas A. Brown, Nov 03 2022
Showing 1-2 of 2 results.