cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A215897 a(n) = A215723(n) / 2^(n-1).

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 8, 18, 27, 44, 267, 1024, 3645, 6144, 23859, 50176, 187377, 531468, 3302697, 10616832, 39337984, 102546588, 568833245, 3073593600, 8721488875, 32998447572, 164855413835, 572108938470, 2490252810073, 10831449635712, 68045615234375, 282773291271138, 1592413932070703, 5234078743146888
Offset: 1

Views

Author

Joerg Arndt, Aug 26 2012

Keywords

Comments

A215723(n) is divisible by 2^(n-1), indeed the determinant of any n X n sign matrix is divisible by 2^(n-1). Proof: subtract the first row from other rows, the result is all rows except for the first are divisible by 2, hence by using expansion by minors proof follows. (Warren D. Smith on the math-fun mailing list, Aug 18 2012)

Crossrefs

Cf. A215723 (Maximum determinant of an n X n circulant (1,-1)-matrix).

Formula

a(n) = A215723(n) / 2^(n-1).

Extensions

a(23)-a(28) (as calculated by Warren Smith) from W. Edwin Clark, Sep 02 2012
a(29) onward from Richard P. Brent, Jan 02 2018

A086432 Maximum of |det(A)| where A is an n X n circulant (0,1) matrix over the integers.

Original entry on oeis.org

1, 1, 2, 3, 4, 9, 32, 45, 95, 275, 1458, 2240, 6561, 19952, 131072, 214245, 755829, 2994003, 19531250, 37579575, 134534444, 577397064, 4353564672, 10757577600, 31495183733, 154611524732, 738139162166, 3124126889325, 11937232425585, 65455857159975
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 08 2003

Keywords

Crossrefs

Cf. A086323.
Cf. A215723 (same for circulant (+1,-1) matrices), A215724 (same for (1,-1)-Toeplitz matrices).

Programs

  • Mathematica
    Do[m=0;j=i-1;n=k=2^j; Do[l=IntegerDigits[k,2]; m=Max[m,Det[NestList[RotateRight,l,j]]]; k++,{n}]; Print[m], {i,30}] (* Hans Havermann, Dec 05 2012 *)

Extensions

More terms from Vladeta Jovovic, Sep 09 2003
a(19)-a(22) from Joerg Arndt, Aug 25 2012
a(23)-a(30) from Hans Havermann, Dec 05 2012

A215724 Maximum absolute value of determinant of n X n (1,-1)-Toeplitz matrix.

Original entry on oeis.org

1, 2, 4, 16, 48, 160, 576, 2560, 12288, 73728, 327680, 2097152, 14929920, 68853760, 390905856, 2363752448
Offset: 1

Views

Author

W. Edwin Clark, Aug 22 2012

Keywords

Examples

			a(2) = 2:
    1  1
   -1  1
a(3) = 4:
    1  1  1
   -1  1  1
    1 -1  1
a(6) = 160
    1 -1  1  1  1  1
   -1  1 -1  1  1  1
   -1 -1  1 -1  1  1
   -1 -1 -1  1 -1  1
    1 -1 -1 -1  1 -1
    1  1 -1 -1 -1  1
		

References

  • Warren D. Smith, Posting to the Math Fun Mailing List, August 18, 2012.

Crossrefs

Cf. A086432 (same for circulant (0,1) matrices), A215723 (same for circulant (+1,-1) matrices).

Programs

  • Maple
    a:=proc(n)
    local T, b, U, M,d,r;
    T:= combinat:-cartprod([seq({-1, 1}, j = 1..2*n-1)]);
    b:= 0;
    while not T[finished] do
       U := T[nextvalue]();
       M := LinearAlgebra:-ToeplitzMatrix(U,n);
       d:= abs(LinearAlgebra:-Determinant(M)):
       if d > b then b := d; end if;
    end do;
    return b;
    end proc:

Extensions

a(15) from Lucas A. Brown, Sep 06 2022
a(16) from Lucas A. Brown, Nov 03 2022
Showing 1-3 of 3 results.