A215897 a(n) = A215723(n) / 2^(n-1).
1, 0, 1, 2, 3, 4, 8, 18, 27, 44, 267, 1024, 3645, 6144, 23859, 50176, 187377, 531468, 3302697, 10616832, 39337984, 102546588, 568833245, 3073593600, 8721488875, 32998447572, 164855413835, 572108938470, 2490252810073, 10831449635712, 68045615234375, 282773291271138, 1592413932070703, 5234078743146888
Offset: 1
Links
- Richard P. Brent, Table of n, a(n) for n = 1..52
- Richard P. Brent and Adam B. Yedidia, Computation of maximal determinants of binary circulant matrices, arXiv:1801.00399 [math.CO], 2018.
- R. P. Brent and A. Yedidia, Computation of maximal determinants of binary circulant matrices, Journal of Integer Sequences, 21 (2018), article 18.5.6.
- Index entries for sequences related to maximal determinants
Crossrefs
Cf. A215723 (Maximum determinant of an n X n circulant (1,-1)-matrix).
Formula
a(n) = A215723(n) / 2^(n-1).
Extensions
a(23)-a(28) (as calculated by Warren Smith) from W. Edwin Clark, Sep 02 2012
a(29) onward from Richard P. Brent, Jan 02 2018
Comments