A086435 Maximum number of parts possible in a factorization of n into a product of distinct numbers > 1.
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 3, 3
Offset: 1
Keywords
Examples
a(6)=2 since 6 may be factored into distinct parts as {{2,3},{6}}, so the largest number of factors possible is 2. a(8)=2 since 8 may be factored into distinct parts as {{8},{2,4}}, so the largest numbers of factors possible is 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Unordered Factorization.
- Index entries for sequences computed from exponents in factorization of n
Programs
-
PARI
{ a(n,m=1) = if(n>m, 1 + vecmax( apply( x->if(x>m,a(n/x,x)), divisors(n) ))) } \\ Max Alekseyev, Jul 16 2009
-
PARI
{ aopt(n) = local(f,t); f=factor(n)[,2]; t=select(x->x>1,f); a(prod(j=1,#t,prime(j)^t[j])) + #f - #t } /* optimized version */ \\ Max Alekseyev, Apr 23 2010
Extensions
More terms from Max Alekseyev, Apr 23 2010
Comments