cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086455 Sum of divisors of prime powers: sigma(p^e).

Original entry on oeis.org

1, 3, 4, 7, 6, 8, 15, 13, 12, 14, 31, 18, 20, 24, 31, 40, 30, 32, 63, 38, 42, 44, 48, 57, 54, 60, 62, 127, 68, 72, 74, 80, 121, 84, 90, 98, 102, 104, 108, 110, 114, 133, 156, 128, 255, 132, 138, 140, 150, 152, 158, 164, 168, 183, 174, 180, 182, 192, 194, 198
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 20 2003

Keywords

Crossrefs

Programs

  • Maple
    A086455 := proc(n)
        numtheory[sigma](A000961(n)) ;
    end proc: # R. J. Mathar, Jun 04 2016
  • Mathematica
    DivisorSigma[1, #]& /@ Join[{1}, Select[Range[2, 200], PrimePowerQ]] (* Jean-François Alcover, Feb 10 2018 *)
  • PARI
    list(lim) = apply(sigma, select(x -> x == 1 || isprimepower(x), vector(lim, i, i))); \\ Amiram Eldar, May 07 2025

Formula

a(n) = A000203(A000961(n)).
a(n) = (p^(e+1)-1)/(p-1), where p^e = A000961(n).
a(n) = (A025473(n)^(A025474(n)+1)-1)/(A025473(n)-1).