cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A091051 Sum of divisors of n that are perfect powers.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 13, 10, 1, 1, 5, 1, 1, 1, 29, 1, 10, 1, 5, 1, 1, 1, 13, 26, 1, 37, 5, 1, 1, 1, 61, 1, 1, 1, 50, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 29, 50, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 125, 1, 1, 1, 5, 1, 1, 1, 58, 1, 1, 26, 5, 1, 1, 1, 29, 118, 1, 1, 5, 1, 1, 1, 13, 1, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 15 2003

Keywords

Comments

a(n) = 1 iff n is squarefree: a(A005117(n))=1, a(A013929(n))>1;
a(p^k) = 1+(p^2)*(p^(k-1)-1)/(p-1) for p prime, k>0.
a(A000961(n)) = A086455(n)-A025473(n).

Examples

			Divisors of n=108: {1,2,3,4,6,9,12,18,27,36,54,108}, a(108) = 1^2 + 2^2 + 3^2 + 3^3 + 6^2 = 1+4+9+27+36 = 77.
		

Crossrefs

Differs from A183097 for the first time at n=72.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #*Boole[# == 1 || GCD @@ FactorInteger[#][[All, 2]] > 1]&]; Array[a, 90] (* Jean-François Alcover, May 09 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d==1) || ispower(d))); \\ Michel Marcus, Oct 02 2014

Formula

G.f.: Sum_{k=i^j, i>=1, j>=2, excluding duplicates} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 20 2017

A086454 Number of divisors of prime powers: tau(p^e).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 4, 3, 2, 2, 5, 2, 2, 2, 3, 4, 2, 2, 6, 2, 2, 2, 2, 3, 2, 2, 2, 7, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 8, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 9, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{f = FactorInteger[n]}, If[Length[f] == 1, f[[1, 2]] + 1, Nothing]]; f[1] = 1; Array[f, 400] (* Amiram Eldar, Apr 09 2024 *)

Formula

a(n) = A000005(A000961(n)).
a(n) = e+1 for A000961(n) = p^e.
a(n) = A025474(n) + 1.

A273938 Sum of the divisors of the n-th odd prime power.

Original entry on oeis.org

1, 4, 6, 8, 13, 12, 14, 18, 20, 24, 31, 40, 30, 32, 38, 42, 44, 48, 57, 54, 60, 62, 68, 72, 74, 80, 121, 84, 90, 98, 102, 104, 108, 110, 114, 133, 156, 128, 132, 138, 140, 150, 152, 158, 164, 168, 183, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230
Offset: 1

Views

Author

R. J. Mathar, Jun 04 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A000203(A061345(n-1)).
Showing 1-3 of 3 results.