A091051 Sum of divisors of n that are perfect powers.
1, 1, 1, 5, 1, 1, 1, 13, 10, 1, 1, 5, 1, 1, 1, 29, 1, 10, 1, 5, 1, 1, 1, 13, 26, 1, 37, 5, 1, 1, 1, 61, 1, 1, 1, 50, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 29, 50, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 125, 1, 1, 1, 5, 1, 1, 1, 58, 1, 1, 26, 5, 1, 1, 1, 29, 118, 1, 1, 5, 1, 1, 1, 13, 1, 10
Offset: 1
Keywords
Examples
Divisors of n=108: {1,2,3,4,6,9,12,18,27,36,54,108}, a(108) = 1^2 + 2^2 + 3^2 + 3^3 + 6^2 = 1+4+9+27+36 = 77.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16385
- Eric Weisstein's World of Mathematics, Perfect Power
- Eric Weisstein's World of Mathematics, Divisor Function
- Index entries for sequences related to sums of divisors
Programs
-
Mathematica
a[n_] := DivisorSum[n, #*Boole[# == 1 || GCD @@ FactorInteger[#][[All, 2]] > 1]&]; Array[a, 90] (* Jean-François Alcover, May 09 2017 *)
-
PARI
a(n) = sumdiv(n, d, d*((d==1) || ispower(d))); \\ Michel Marcus, Oct 02 2014
Formula
G.f.: Sum_{k=i^j, i>=1, j>=2, excluding duplicates} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 20 2017
Comments