cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A091050 Number of divisors of n that are perfect powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 15 2003

Keywords

Comments

Not the same as A005361: a(72)=5 <> A005361(72)=6.

Examples

			Divisors of n=108: {1,2,3,4,6,9,12,18,27,36,54,108},
a(108) = #{1^2, 2^2, 3^2, 3^3, 6^2} = 5.
		

Crossrefs

Programs

  • Haskell
    a091050 = sum . map a075802 . a027750_row
    -- Reinhard Zumkeller, Dec 13 2012
    
  • Mathematica
    ppQ[n_] := GCD @@ Last /@ FactorInteger@ n > 1; ppQ[1] = True; f[n_] := Length@ Select[ Divisors@ n, ppQ]; Array[f, 105] (* Robert G. Wilson v, Dec 12 2012 *)
  • PARI
    a(n) = 1+ sumdiv(n, d, ispower(d)>1); \\ Michel Marcus, Sep 21 2014
    
  • PARI
    a(n)={my(f=factor(n)[,2]); 1 + if(#f, sum(k=2, vecmax(f), moebius(k)*(1 - prod(i=1, #f, 1 + f[i]\k))))} \\ Andrew Howroyd, Aug 30 2020

Formula

a(n) = 1 iff n is squarefree: a(A005117(n)) = 1, a(A013929(n)) > 1.
a(p^k) = k for p prime, k>0: a(A000961(n)) = A025474(n).
a(n) = Sum_{k=1..A000005(n)} A075802(A027750(n,k)). - Reinhard Zumkeller, Dec 13 2012
G.f.: Sum_{k=i^j, i>=1, j>=2, excluding duplicates} x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 20 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + A072102 = 1.874464... . - Amiram Eldar, Dec 31 2023

Extensions

Wrong formula deleted by Amiram Eldar, Apr 29 2020

A183097 a(n) = sum of powerful divisors d (including 1) of n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 13, 10, 1, 1, 5, 1, 1, 1, 29, 1, 10, 1, 5, 1, 1, 1, 13, 26, 1, 37, 5, 1, 1, 1, 61, 1, 1, 1, 50, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 29, 50, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 125, 1, 1, 1, 5, 1, 1, 1, 130, 1, 1, 26, 5, 1, 1, 1, 29, 118, 1, 1, 5, 1, 1, 1, 13, 1, 10, 1, 5, 1, 1, 1, 61, 1, 50, 10, 130
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Sequence is not the same as A091051(n); a(72) = 130, A091051(72) = 58.
a(n) = sum of divisors d of n from set A001694 - powerful numbers.

Examples

			For n = 12, set of such divisors is {1, 4}; a(12) = 1+4 = 5.
		

Crossrefs

Programs

  • Maple
    A183097 := proc(n)
        local a,pe,p,e ;
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if e > 1 then
                a := a* ( (p^(e+1)-1)/(p-1)-p) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jun 02 2020
  • Mathematica
    fun[p_,e_] := (p^(e+1)-1)/(p-1) - p; a[1] = 1; a[n_] := Times @@ (fun @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, May 14 2019 *)
  • PARI
    A183097(n) = sumdiv(n, d, ispowerful(d)*d); \\ Antti Karttunen, Oct 07 2017
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2]+1)-1) / (f[i,1]-1) - f[i,1]);} \\ Amiram Eldar, Dec 24 2023

Formula

a(n) = A000203(n) - A183098(n) = A183100(n) + 1.
a(1) = 1, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = ((p^(k+1)-1) / (p-1))-p, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
From Amiram Eldar, Dec 24 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * zeta(3*s-3) / zeta(6*s-6).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)^2/(3*zeta(3)) = 1.892451... . (End)

A183104 a(n) = product of divisors of n that are perfect powers.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 32, 9, 1, 1, 4, 1, 1, 1, 512, 1, 9, 1, 4, 1, 1, 1, 32, 25, 1, 243, 4, 1, 1, 1, 16384, 1, 1, 1, 1296, 1, 1, 1, 32, 1, 1, 1, 4, 9, 1, 1, 512, 49, 25, 1, 4, 1, 243, 1, 32, 1, 1, 1, 4, 1, 1, 9, 1048576, 1, 1, 1, 4, 1, 1, 1, 10368
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Sequence is not the same as A183102: a(72) = 10368, A183102(72) = 746496.
Not multiplicative, as a(4)*a(9) <> a(36). - R. J. Mathar, Jun 07 2011

Examples

			For n = 12, set of such divisors is {1, 4}; a(12) = 1*4 = 4.
		

Crossrefs

Programs

  • Maple
    isA001597 := proc(n) local e ; e := seq(op(2,p),p=ifactors(n)[2]) ; return ( igcd(e) >=2 ) ; end proc:
    A183104 := proc(n) local a,d; a := 1 ; for d in numtheory[divisors](n) do if isA001597(d) then a := a*d; end if; end do; a ; end proc:
    seq(A183104(n),n=1..72) ; # R. J. Mathar, Jun 07 2011
  • Mathematica
    perfPQ[n_]:=GCD@@FactorInteger[n][[All,2]]>1; Table[Times@@Select[Divisors[n],perfPQ[#]&],{n,120}] (* Harvey P. Dale, Mar 07 2024 *)
  • PARI
    A183104(n) = { my(m=1); fordiv(n, d, if(ispower(d), m *= d)); m; }; \\ Antti Karttunen, Oct 07 2017

Formula

a(n) = A007955(n) / A183105(n).
a(1) = 1, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = p^((1/2*k*(k+1))-1), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.

A183101 a(n) = sum of divisors of n that are not perfect powers.

Original entry on oeis.org

0, 2, 3, 2, 5, 11, 7, 2, 3, 17, 11, 23, 13, 23, 23, 2, 17, 29, 19, 37, 31, 35, 23, 47, 5, 41, 3, 51, 29, 71, 31, 2, 47, 53, 47, 41, 37, 59, 55, 77, 41, 95, 43, 79, 68, 71, 47, 95, 7, 67, 71, 93, 53, 83, 71, 107, 79, 89, 59, 163, 61, 95, 94, 2, 83, 143, 67, 121, 95, 143, 71, 137, 73, 113, 98, 135, 95, 167, 79, 157, 3, 125, 83, 219, 107, 131, 119, 167, 89, 224, 111, 163, 127, 143, 119, 191, 97, 121, 146, 87
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Sequence is not the same as A183098(n): a(72) = 137, A183098(72) = 65.

Examples

			For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 2+3+6+12=23.
		

Crossrefs

Programs

Formula

a(n) = A000203(n) - A091051(n).
a(1) = 0, a(p) = p, a(pq) = p+q+pq, a(pq...z) = [(p+1)*(q+1)*…*(z+1)]-1, a(p^k) = p, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Showing 1-4 of 4 results.