cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A091051 Sum of divisors of n that are perfect powers.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 13, 10, 1, 1, 5, 1, 1, 1, 29, 1, 10, 1, 5, 1, 1, 1, 13, 26, 1, 37, 5, 1, 1, 1, 61, 1, 1, 1, 50, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 29, 50, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 125, 1, 1, 1, 5, 1, 1, 1, 58, 1, 1, 26, 5, 1, 1, 1, 29, 118, 1, 1, 5, 1, 1, 1, 13, 1, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 15 2003

Keywords

Comments

a(n) = 1 iff n is squarefree: a(A005117(n))=1, a(A013929(n))>1;
a(p^k) = 1+(p^2)*(p^(k-1)-1)/(p-1) for p prime, k>0.
a(A000961(n)) = A086455(n)-A025473(n).

Examples

			Divisors of n=108: {1,2,3,4,6,9,12,18,27,36,54,108}, a(108) = 1^2 + 2^2 + 3^2 + 3^3 + 6^2 = 1+4+9+27+36 = 77.
		

Crossrefs

Differs from A183097 for the first time at n=72.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #*Boole[# == 1 || GCD @@ FactorInteger[#][[All, 2]] > 1]&]; Array[a, 90] (* Jean-François Alcover, May 09 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d==1) || ispower(d))); \\ Michel Marcus, Oct 02 2014

Formula

G.f.: Sum_{k=i^j, i>=1, j>=2, excluding duplicates} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 20 2017

A183102 a(n) = product of powerful divisors d of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 32, 9, 1, 1, 4, 1, 1, 1, 512, 1, 9, 1, 4, 1, 1, 1, 32, 25, 1, 243, 4, 1, 1, 1, 16384, 1, 1, 1, 1296, 1, 1, 1, 32, 1, 1, 1, 4, 9, 1, 1, 512, 49, 25, 1, 4, 1, 243, 1, 32, 1, 1, 1, 4, 1, 1, 9, 1048576, 1, 1, 1, 4, 1, 1, 1, 746496, 1
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

a(n) = product of divisors d of n from set A001694 - powerful numbers.
Sequence is not the same as A183104(n): a(72) = 746496, A183104(72) = 10368.
Not multiplicative: a(4)*a(9) = 4*9=36 <> a(36) = 1296. - R. J. Mathar, Jun 07 2011

Examples

			For n = 12, set of such divisors is {1, 4}; a(12) = 1*4 = 4.
		

Crossrefs

Programs

  • Maple
    isA001694 := proc(n) for p in ifactors(n)[2] do if op(2,p) = 1 then return false; end if; end do; return true; end proc:
    A183102 := proc(n) local a,d; a := 1 ; for d in numtheory[divisors](n) do if isA001694(d) then a := a*d; end if; end do; a ; end proc:
    seq(A183102(n),n=1..70) ; # R. J. Mathar, Jun 07 2011
  • Mathematica
    powerfulQ[n_] := Min[FactorInteger[n][[All, 2]]] > 1;
    a[n_] := Times @@ Select[Divisors[n], powerfulQ];
    Table[a[n], {n, 1, 73}] (* Jean-François Alcover, Jun 01 2024 *)
  • PARI
    A183102(n) = { my(m=1); fordiv(n, d, if(ispowerful(d), m *= d)); m; }; \\ Antti Karttunen, Oct 07 2017

Formula

a(n) = A007955(n) / A183103(n).
a(1) = 1, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = p^((1/2*k*(k+1))-1), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.

A183105 a(n) = product of divisors of n that are not perfect powers.

Original entry on oeis.org

1, 2, 3, 2, 5, 36, 7, 2, 3, 100, 11, 432, 13, 196, 225, 2, 17, 648, 19, 2000, 441, 484, 23, 10368, 5, 676, 3, 5488, 29, 810000, 31, 2, 1089, 1156, 1225, 7776, 37, 1444, 1521, 80000, 41, 3111696, 43, 21296, 10125, 2116, 47, 497664, 7, 5000, 2601, 35152, 53, 34992, 3025, 307328, 3249, 3364, 59, 11664000000, 61, 3844, 27783, 2, 4225, 18974736, 67, 78608, 4761, 24010000, 71, 13436928
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Sequence is not the same as A183103: a(72) = 13436928, A183103(72) = 186624.
Not multiplicative since a(2)*a(3) <> a(6). - R. J. Mathar, Jun 07 2011

Examples

			For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 1*2*3*6*12 = 432.
		

Crossrefs

Programs

  • Maple
    isA001597 := proc(n) local e ; e := seq(op(2,p),p=ifactors(n)[2]) ; return ( igcd(e) >=2 ) ; end proc:
    A183105 := proc(n) local a,d; a := 1 ; for d in numtheory[divisors](n) do if not isA001597(d) then a := a*d; end if; end do; a ; end proc:
    seq(A183105(n),n=1..72) ; # R. J. Mathar, Jun 07 2011
  • Mathematica
    perfectPowerQ[n_] := GCD @@ FactorInteger[n][[All, 2]] > 1;
    a[n_] := Times @@ Select[Divisors[n], !perfectPowerQ[#]&];
    Table[a[n], {n, 1, 72}] (* Jean-François Alcover, May 31 2024 *)
  • PARI
    A183105(n) = { my(m=1); fordiv(n, d, if(!ispower(d), m *= d)); m; }; \\ Antti Karttunen, Oct 07 2017

Formula

a(n) = A007955(n) / A183104(n).
a(1) = 1, a(p) = p, a(pq) = (pq)^2, a(pq...z) = (pq...z)^(2^(k-1)), a(p^k) = p, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Showing 1-3 of 3 results.