cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A183103 a(n) = product of non-powerful divisors d of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 36, 7, 2, 3, 100, 11, 432, 13, 196, 225, 2, 17, 648, 19, 2000, 441, 484, 23, 10368, 5, 676, 3, 5488, 29, 810000, 31, 2, 1089, 1156, 1225, 7776, 37, 1444, 1521, 80000, 41, 3111696, 43, 21296, 10125, 2116, 47, 497664, 7, 5000, 2601, 35152, 53, 34992, 3025, 307328, 3249, 3364, 59, 11664000000, 61, 3844, 27783, 2, 4225, 18974736, 67, 78608, 4761, 24010000, 71, 186624, 73
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Sequence is not the same as A183105: a(72) = 186624, A183105(72) = 13436928.
Not multiplicative, for example a(2)*a(3) <> a(6). - R. J. Mathar, Jun 07 2011

Examples

			For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 1*2*3*6*12 = 432.
		

Crossrefs

Programs

  • Maple
    isA001694 := proc(n) for p in ifactors(n)[2] do if op(2,p) = 1 then return false; end if; end do; return true; end proc:
    A183103 := proc(n) local a,d; a := 1 ; for d in numtheory[divisors](n) do if not isA001694(d) then a := a*d; end if; end do; a ; end proc:
    seq(A183103(n),n=1..73) ; # R. J. Mathar, Jun 07 2011
  • Mathematica
    powerfulQ[n_] := Min[FactorInteger[n][[All, 2]]] > 1;
    a[n_] := Times @@ Select[Divisors[n], !powerfulQ[#]&];
    Table[a[n], {n, 1, 73}] (* Jean-François Alcover, Jun 01 2024 *)
  • PARI
    A183103(n) = { my(m=1); fordiv(n, d, if(!ispowerful(d), m *= d)); m; }; \\ Antti Karttunen, Oct 07 2017

Formula

a(n) = A007955(n) / A183102(n).
a(1) = 1, a(p) = p, a(pq) = (pq)^2, a(pq...z) = (pq...z)^(2^(k-1)), a(p^k) = p, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.

A183104 a(n) = product of divisors of n that are perfect powers.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 32, 9, 1, 1, 4, 1, 1, 1, 512, 1, 9, 1, 4, 1, 1, 1, 32, 25, 1, 243, 4, 1, 1, 1, 16384, 1, 1, 1, 1296, 1, 1, 1, 32, 1, 1, 1, 4, 9, 1, 1, 512, 49, 25, 1, 4, 1, 243, 1, 32, 1, 1, 1, 4, 1, 1, 9, 1048576, 1, 1, 1, 4, 1, 1, 1, 10368
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Sequence is not the same as A183102: a(72) = 10368, A183102(72) = 746496.
Not multiplicative, as a(4)*a(9) <> a(36). - R. J. Mathar, Jun 07 2011

Examples

			For n = 12, set of such divisors is {1, 4}; a(12) = 1*4 = 4.
		

Crossrefs

Programs

  • Maple
    isA001597 := proc(n) local e ; e := seq(op(2,p),p=ifactors(n)[2]) ; return ( igcd(e) >=2 ) ; end proc:
    A183104 := proc(n) local a,d; a := 1 ; for d in numtheory[divisors](n) do if isA001597(d) then a := a*d; end if; end do; a ; end proc:
    seq(A183104(n),n=1..72) ; # R. J. Mathar, Jun 07 2011
  • Mathematica
    perfPQ[n_]:=GCD@@FactorInteger[n][[All,2]]>1; Table[Times@@Select[Divisors[n],perfPQ[#]&],{n,120}] (* Harvey P. Dale, Mar 07 2024 *)
  • PARI
    A183104(n) = { my(m=1); fordiv(n, d, if(ispower(d), m *= d)); m; }; \\ Antti Karttunen, Oct 07 2017

Formula

a(n) = A007955(n) / A183105(n).
a(1) = 1, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = p^((1/2*k*(k+1))-1), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.

A183101 a(n) = sum of divisors of n that are not perfect powers.

Original entry on oeis.org

0, 2, 3, 2, 5, 11, 7, 2, 3, 17, 11, 23, 13, 23, 23, 2, 17, 29, 19, 37, 31, 35, 23, 47, 5, 41, 3, 51, 29, 71, 31, 2, 47, 53, 47, 41, 37, 59, 55, 77, 41, 95, 43, 79, 68, 71, 47, 95, 7, 67, 71, 93, 53, 83, 71, 107, 79, 89, 59, 163, 61, 95, 94, 2, 83, 143, 67, 121, 95, 143, 71, 137, 73, 113, 98, 135, 95, 167, 79, 157, 3, 125, 83, 219, 107, 131, 119, 167, 89, 224, 111, 163, 127, 143, 119, 191, 97, 121, 146, 87
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Sequence is not the same as A183098(n): a(72) = 137, A183098(72) = 65.

Examples

			For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 2+3+6+12=23.
		

Crossrefs

Programs

Formula

a(n) = A000203(n) - A091051(n).
a(1) = 0, a(p) = p, a(pq) = p+q+pq, a(pq...z) = [(p+1)*(q+1)*…*(z+1)]-1, a(p^k) = p, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Showing 1-3 of 3 results.