cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A349064 Numbers k such that A183097(k) > 2*k.

Original entry on oeis.org

144, 216, 288, 432, 576, 648, 864, 1152, 1296, 1600, 1728, 1944, 2000, 2304, 2592, 3200, 3456, 3600, 3888, 4000, 4608, 5000, 5184, 5400, 5488, 5832, 6272, 6400, 6912, 7056, 7200, 7776, 8000, 9000, 9216, 10000, 10368, 10584, 10800, 10976, 11664, 12544, 12800, 13500
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2021

Keywords

Comments

The least odd term is a(934) = A349065(1) = 3472875.
Not all the terms are powerful. E.g., (prime(44)#)^3/4 and (prime(22)#)^6/32 are nonpowerful terms. What is the least nonpowerful term?

Examples

			144 is a term since A183097(144) = 290 > 2*144 = 288.
		

Crossrefs

Subsequence of A005101.
A349065 is a subsequence.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := s[n] > 2*n; Select[Range[15000], q]
  • PARI
    isok(k) = sumdiv(k, d, ispowerful(d)*d) > 2*k; \\ Michel Marcus, Nov 07 2021

A349065 Odd numbers k such that A183097(k) > 2*k.

Original entry on oeis.org

3472875, 10418625, 17364375, 24310125, 31255875, 52093125, 72930375, 86821875, 93767625, 121550625, 156279375, 170170875, 202145625, 218791125, 260465625, 281302875, 364651875, 420217875, 434109375, 468838125, 510512625, 586915875, 606436875, 607753125, 656373375
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2021

Keywords

Comments

The odd terms of A349064.

Examples

			3472875 is a term since A183097(3472875) = 7002474 > 2*3472875 = 6945750.
		

Crossrefs

Subsequence of A005101, A005231 and A349064.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := s[n] > 2*n; Select[Range[1, 2.5*10^7, 2], q]

A349112 Powerful highly abundant numbers: numbers m such that psigma(m) > psigma(k) for all k < m, where psigma(k) is the sum of powerful divisors of k (A183097).

Original entry on oeis.org

1, 4, 8, 16, 27, 32, 64, 72, 108, 128, 144, 200, 216, 256, 288, 392, 400, 432, 576, 648, 800, 864, 1152, 1296, 1728, 1944, 2304, 2592, 3456, 3888, 5184, 6912, 7776, 10000, 10368, 11664, 13824, 15552, 20000, 20736, 23328, 27000, 27648, 31104, 34992, 40000, 41472
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2021

Keywords

Comments

The corresponding record values are 1, 5, 13, 29, 37, 61, 125, 130, 185, 253, ...

Examples

			The first 8 terms of A183097 are 1, 1, 1, 5, 1, 1, 1 and 13. The record values, 1, 5 and 13, occur at 1, 4 and 8, the first 3 terms of this sequence.
		

Crossrefs

A349111 is a subsequence.
Similar sequences: A285614, A292983, A327634, A328134, A329883, A348272.

Programs

  • Mathematica
    f[p_,e_] := (p^(e+1)-1)/(p-1) - p; s[1] = 1; s[n_] := Times @@ f @@@FactorInteger[n]; seq = {}; sm = 0; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^5}]; seq

A349063 Numbers k such that k and k+1 have the same sum of powerful divisors (A183097) and this sum is larger than 1.

Original entry on oeis.org

2988, 4067, 7595, 13572, 14651, 24156, 25235, 27684, 28763, 34740, 35819, 38268, 39347, 41327, 46403, 48852, 49931, 56987, 59436, 66492, 70020, 78155, 81683, 87660, 88739, 91188, 98244, 99323, 101772, 102851, 108828, 109907, 112356, 113435, 119412, 120491, 122940
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2021

Keywords

Comments

Numbers k such that A183097(k) = A183097(k+1) > 1.

Examples

			2988 is a term since = A183097(2988) = A183097(2989) = 50 > 1.
		

Crossrefs

Cf. A183097.
Similar sequences: A002961, A064115, A064125, A293183, A306985.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := (s1 = s[n]) > 1 && s1 == s[n + 1]; Select[Range[10^5], q]

A349111 Powerful superabundant numbers: numbers m such that psigma(m)/m > psigma(k)/k for all k < m, where psigma(k) is the sum of powerful divisors of k (A183097).

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 144, 216, 432, 864, 1296, 1728, 2592, 5184, 10368, 15552, 31104, 54000, 108000, 162000, 216000, 324000, 648000, 1296000, 1944000, 3240000, 3888000, 6480000, 9720000, 19440000, 38880000, 58320000, 74088000, 111132000, 222264000, 444528000, 666792000
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2021

Keywords

Comments

The corresponding record values are 1, 5/4, 13/8, 29/16, 61/32, 125/64, ...
The least term k with psigma(k)/k > m, for m = 2, 3, ..., is 144, 54000, 666792000, ...

Crossrefs

Subsequence of A349112.
Similar sequences: A002110 (unitary), A037992 (infinitary), A061742, A292984, A329882, A348273.

Programs

  • Mathematica
    f[p_,e_] := (p^(e+1)-1)/(p-1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; rm = 0; Do[r1 = s[n]/n; If[r1 > rm, rm = r1; AppendTo[seq, n]], {n, 1, 10^6}]; seq

A360720 a(n) is the sum of unitary divisors of n that are powerful (A001694).

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 9, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 9, 26, 1, 28, 5, 1, 1, 1, 33, 1, 1, 1, 50, 1, 1, 1, 9, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 28, 1, 9, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 90, 1, 1, 26, 5, 1, 1, 1, 17, 82
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2023

Keywords

Comments

The number of these divisors is given by A323308.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^f[i, 2] + 1));}
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p^3*X^4 - p^2*X^3 + p^3*X^3) / ((1 - X) * (1 - p^2*X^2)))[n], ", ")) \\ Vaclav Kotesovec, Feb 18 2023

Formula

Multiplicative with a(p) = 1 and a(p^e) = p^e + 1 for e > 1.
a(n) <= A034448(n), with equality if and only if n is powerful (A001694).
a(n) <= A183097(n), with equality if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(s)*zeta(s-1)*Product_{p prime} (1 - p^(1-s) + p^(2-2*s) - p^(2-3*s)).
From Vaclav Kotesovec, Feb 18 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{primes p} (1 - p^(3-4*s) - p^(2-3*s) + p^(3-3*s)).
Sum_{k=1..n} a(k) ~ c * zeta(3/2) * n^(3/2) / 3, where c = Product_{primes p} (1 + 1/p^(3/2) - 1/p^(5/2) - 1/p^3) = 1.48039182258752809541724060173644... (End)
a(n) = A034448(A057521(n)) (the sum of unitary divisors of the powerful part of n). - Amiram Eldar, Dec 12 2023
a(n) = A034448(n)/A092261(n). - Amiram Eldar, Jun 19 2025

A385006 The sum of the biquadratefree divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 15, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 15, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 60, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 15, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

First differs from A365682 and A366992 at n = 32.
The number of these divisors is A252505(n), and the largest of them is A058035(n).

Crossrefs

The sum of divisors d of n such that d is: A000593 (odd), A033634 (exponentially odd), A035316 (square), A038712 (power of 2), A048250 (squarefree), A072079 (3-smooth), A073185 (cubefree), A113061 (cube), A162296 (nonsquarefree), A183097 (powerful), A186099 (5-rough), A353900 (exponentially 2^n), A385005 (cubefull), this sequence (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := (p^Min[e+1, 4] - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; (p^min(e+1, 4) - 1)/(p - 1));}

Formula

Multiplicative with a(p^e) = (p^min(e+1, 4) - 1)/(p - 1).
In general, the sum of the k-free (numbers that are not divisible by a k-th power larger than 1) divisors of n is multiplicative with a(p^e) = (p^min(e+1, k) - 1)/(p - 1).
Dirichlet g.f.: zeta(s) * zeta(s-1) /zeta(4*s-4).
In general, the sum of the k-free divisors of n has Dirichlet g.f.: zeta(s)*zeta(s-1)/zeta(k*s-k).
Sum_{k=1..n} a(k) ~ (15/(2*Pi^2)) * n^2.
In general, the sum of the k-free divisors of n has an average order (Pi^2/(12*zeta(k))) * n^2.

A091051 Sum of divisors of n that are perfect powers.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 13, 10, 1, 1, 5, 1, 1, 1, 29, 1, 10, 1, 5, 1, 1, 1, 13, 26, 1, 37, 5, 1, 1, 1, 61, 1, 1, 1, 50, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 29, 50, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 125, 1, 1, 1, 5, 1, 1, 1, 58, 1, 1, 26, 5, 1, 1, 1, 29, 118, 1, 1, 5, 1, 1, 1, 13, 1, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 15 2003

Keywords

Comments

a(n) = 1 iff n is squarefree: a(A005117(n))=1, a(A013929(n))>1;
a(p^k) = 1+(p^2)*(p^(k-1)-1)/(p-1) for p prime, k>0.
a(A000961(n)) = A086455(n)-A025473(n).

Examples

			Divisors of n=108: {1,2,3,4,6,9,12,18,27,36,54,108}, a(108) = 1^2 + 2^2 + 3^2 + 3^3 + 6^2 = 1+4+9+27+36 = 77.
		

Crossrefs

Differs from A183097 for the first time at n=72.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #*Boole[# == 1 || GCD @@ FactorInteger[#][[All, 2]] > 1]&]; Array[a, 90] (* Jean-François Alcover, May 09 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d==1) || ispower(d))); \\ Michel Marcus, Oct 02 2014

Formula

G.f.: Sum_{k=i^j, i>=1, j>=2, excluding duplicates} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 20 2017

A183098 a(1) = 0, a(n) = sum of divisors d of n such that if d = Product_{i} (p_i^e_i) then not all e_i are > 1.

Original entry on oeis.org

0, 2, 3, 2, 5, 11, 7, 2, 3, 17, 11, 23, 13, 23, 23, 2, 17, 29, 19, 37, 31, 35, 23, 47, 5, 41, 3, 51, 29, 71, 31, 2, 47, 53, 47, 41, 37, 59, 55, 77, 41, 95, 43, 79, 68, 71, 47, 95, 7, 67, 71, 93, 53, 83, 71, 107, 79, 89, 59, 163, 61, 95, 94, 2, 83, 143, 67, 121, 95, 143, 71, 65, 73, 113, 98, 135, 95, 167, 79, 157, 3, 125, 83, 219, 107, 131, 119, 167, 89, 224, 111, 163, 127, 143, 119, 191, 97, 121, 146, 87
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

a(n) = sum of non-powerful divisors d of n where powerful numbers are numbers from A001694(m) for m >= 2.
Sequence is not the same as A183101(n): a(72) = 65, A183101(72) = 137.

Examples

			For n = 12, the set of such divisors is {2, 3, 6, 12}; a(12) = 2+3+6+12 = 23.
		

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e+1)-1)/(p-1); f2[p_, e_] := f1[p, e] - p; a[1] = 0; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Aug 29 2023 *)
  • PARI
    A183098(n) = sumdiv(n, d, d*(!ispowerful(d))); \\ Antti Karttunen, Oct 07 2017

Formula

a(n) = A000203(n) - A183097(n) = A183100(n) - 1.
a(1) = 0, a(p) = p, a(p*q) = p+q+p*q, a(p*q*...*z) = (p+1)*(q+1)*...*(z+1) - 1, a(p^k) = p, for p, q = primes, k = natural numbers, p*q*...*z = product of k (k > 2) distinct primes p, q, ..., z.

Extensions

Name corrected by Jon E. Schoenfield, Aug 29 2023

A183102 a(n) = product of powerful divisors d of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 32, 9, 1, 1, 4, 1, 1, 1, 512, 1, 9, 1, 4, 1, 1, 1, 32, 25, 1, 243, 4, 1, 1, 1, 16384, 1, 1, 1, 1296, 1, 1, 1, 32, 1, 1, 1, 4, 9, 1, 1, 512, 49, 25, 1, 4, 1, 243, 1, 32, 1, 1, 1, 4, 1, 1, 9, 1048576, 1, 1, 1, 4, 1, 1, 1, 746496, 1
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

a(n) = product of divisors d of n from set A001694 - powerful numbers.
Sequence is not the same as A183104(n): a(72) = 746496, A183104(72) = 10368.
Not multiplicative: a(4)*a(9) = 4*9=36 <> a(36) = 1296. - R. J. Mathar, Jun 07 2011

Examples

			For n = 12, set of such divisors is {1, 4}; a(12) = 1*4 = 4.
		

Crossrefs

Programs

  • Maple
    isA001694 := proc(n) for p in ifactors(n)[2] do if op(2,p) = 1 then return false; end if; end do; return true; end proc:
    A183102 := proc(n) local a,d; a := 1 ; for d in numtheory[divisors](n) do if isA001694(d) then a := a*d; end if; end do; a ; end proc:
    seq(A183102(n),n=1..70) ; # R. J. Mathar, Jun 07 2011
  • Mathematica
    powerfulQ[n_] := Min[FactorInteger[n][[All, 2]]] > 1;
    a[n_] := Times @@ Select[Divisors[n], powerfulQ];
    Table[a[n], {n, 1, 73}] (* Jean-François Alcover, Jun 01 2024 *)
  • PARI
    A183102(n) = { my(m=1); fordiv(n, d, if(ispowerful(d), m *= d)); m; }; \\ Antti Karttunen, Oct 07 2017

Formula

a(n) = A007955(n) / A183103(n).
a(1) = 1, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = p^((1/2*k*(k+1))-1), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Showing 1-10 of 19 results. Next