cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A183097 a(n) = sum of powerful divisors d (including 1) of n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 13, 10, 1, 1, 5, 1, 1, 1, 29, 1, 10, 1, 5, 1, 1, 1, 13, 26, 1, 37, 5, 1, 1, 1, 61, 1, 1, 1, 50, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 29, 50, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 125, 1, 1, 1, 5, 1, 1, 1, 130, 1, 1, 26, 5, 1, 1, 1, 29, 118, 1, 1, 5, 1, 1, 1, 13, 1, 10, 1, 5, 1, 1, 1, 61, 1, 50, 10, 130
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Sequence is not the same as A091051(n); a(72) = 130, A091051(72) = 58.
a(n) = sum of divisors d of n from set A001694 - powerful numbers.

Examples

			For n = 12, set of such divisors is {1, 4}; a(12) = 1+4 = 5.
		

Crossrefs

Programs

  • Maple
    A183097 := proc(n)
        local a,pe,p,e ;
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if e > 1 then
                a := a* ( (p^(e+1)-1)/(p-1)-p) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jun 02 2020
  • Mathematica
    fun[p_,e_] := (p^(e+1)-1)/(p-1) - p; a[1] = 1; a[n_] := Times @@ (fun @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, May 14 2019 *)
  • PARI
    A183097(n) = sumdiv(n, d, ispowerful(d)*d); \\ Antti Karttunen, Oct 07 2017
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2]+1)-1) / (f[i,1]-1) - f[i,1]);} \\ Amiram Eldar, Dec 24 2023

Formula

a(n) = A000203(n) - A183098(n) = A183100(n) + 1.
a(1) = 1, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = ((p^(k+1)-1) / (p-1))-p, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
From Amiram Eldar, Dec 24 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * zeta(3*s-3) / zeta(6*s-6).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)^2/(3*zeta(3)) = 1.892451... . (End)

A183100 a(n) is the sum of divisors d of n which are either 1 or of the form Product_{i} (p_i^e_i) where at least one e_i = 1.

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 3, 4, 18, 12, 24, 14, 24, 24, 3, 18, 30, 20, 38, 32, 36, 24, 48, 6, 42, 4, 52, 30, 72, 32, 3, 48, 54, 48, 42, 38, 60, 56, 78, 42, 96, 44, 80, 69, 72, 48, 96, 8, 68, 72, 94, 54, 84, 72, 108, 80, 90, 60, 164, 62, 96, 95, 3, 84, 144, 68, 122, 96, 144, 72, 66, 74, 114, 99, 136, 96, 168, 80, 158, 4, 126, 84, 220, 108, 132, 120, 168, 90, 225, 112, 164, 128, 144, 120, 192, 98, 122, 147, 88
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

a(n) = sum of non-powerful divisors d of n where powerful numbers are numbers from A001694(m) for m >= 1.

Examples

			For n = 12, the set of such divisors is {1, 2, 3, 6, 12}; a(12) = 1+2+3+6+12 = 24.
		

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e+1)-1)/(p-1); f2[p_, e_] := f1[p, e] - p; a[1] = 1; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f + 1; Array[a, 100] (* Amiram Eldar, Aug 29 2023 *)
  • PARI
    A183100(n) = (1 + sumdiv(n, d, d*(!ispowerful(d)))); \\ Antti Karttunen, Oct 07 2017

Formula

a(n) = A000203(n) - A183099(n) = A183098(n) + 1.
a(1) = 1, a(p) = p+1, a(p*q) = (p+1)*(q+1), a(p*q*...*z) = (p+1)*(q+1)*...*(z+1), a(p^k) = p+1, for p, q = primes, k = natural numbers, p*q*...*z = product of k (k > 2) distinct primes p, q, ..., z.

A183103 a(n) = product of non-powerful divisors d of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 36, 7, 2, 3, 100, 11, 432, 13, 196, 225, 2, 17, 648, 19, 2000, 441, 484, 23, 10368, 5, 676, 3, 5488, 29, 810000, 31, 2, 1089, 1156, 1225, 7776, 37, 1444, 1521, 80000, 41, 3111696, 43, 21296, 10125, 2116, 47, 497664, 7, 5000, 2601, 35152, 53, 34992, 3025, 307328, 3249, 3364, 59, 11664000000, 61, 3844, 27783, 2, 4225, 18974736, 67, 78608, 4761, 24010000, 71, 186624, 73
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Sequence is not the same as A183105: a(72) = 186624, A183105(72) = 13436928.
Not multiplicative, for example a(2)*a(3) <> a(6). - R. J. Mathar, Jun 07 2011

Examples

			For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 1*2*3*6*12 = 432.
		

Crossrefs

Programs

  • Maple
    isA001694 := proc(n) for p in ifactors(n)[2] do if op(2,p) = 1 then return false; end if; end do; return true; end proc:
    A183103 := proc(n) local a,d; a := 1 ; for d in numtheory[divisors](n) do if not isA001694(d) then a := a*d; end if; end do; a ; end proc:
    seq(A183103(n),n=1..73) ; # R. J. Mathar, Jun 07 2011
  • Mathematica
    powerfulQ[n_] := Min[FactorInteger[n][[All, 2]]] > 1;
    a[n_] := Times @@ Select[Divisors[n], !powerfulQ[#]&];
    Table[a[n], {n, 1, 73}] (* Jean-François Alcover, Jun 01 2024 *)
  • PARI
    A183103(n) = { my(m=1); fordiv(n, d, if(!ispowerful(d), m *= d)); m; }; \\ Antti Karttunen, Oct 07 2017

Formula

a(n) = A007955(n) / A183102(n).
a(1) = 1, a(p) = p, a(pq) = (pq)^2, a(pq...z) = (pq...z)^(2^(k-1)), a(p^k) = p, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.

A183101 a(n) = sum of divisors of n that are not perfect powers.

Original entry on oeis.org

0, 2, 3, 2, 5, 11, 7, 2, 3, 17, 11, 23, 13, 23, 23, 2, 17, 29, 19, 37, 31, 35, 23, 47, 5, 41, 3, 51, 29, 71, 31, 2, 47, 53, 47, 41, 37, 59, 55, 77, 41, 95, 43, 79, 68, 71, 47, 95, 7, 67, 71, 93, 53, 83, 71, 107, 79, 89, 59, 163, 61, 95, 94, 2, 83, 143, 67, 121, 95, 143, 71, 137, 73, 113, 98, 135, 95, 167, 79, 157, 3, 125, 83, 219, 107, 131, 119, 167, 89, 224, 111, 163, 127, 143, 119, 191, 97, 121, 146, 87
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Sequence is not the same as A183098(n): a(72) = 137, A183098(72) = 65.

Examples

			For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 2+3+6+12=23.
		

Crossrefs

Programs

Formula

a(n) = A000203(n) - A091051(n).
a(1) = 0, a(p) = p, a(pq) = p+q+pq, a(pq...z) = [(p+1)*(q+1)*…*(z+1)]-1, a(p^k) = p, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Showing 1-4 of 4 results.