A086581 Number of Dyck paths of semilength n with no DDUU.
1, 1, 2, 5, 13, 35, 97, 275, 794, 2327, 6905, 20705, 62642, 190987, 586219, 1810011, 5617914, 17518463, 54857506, 172431935, 543861219, 1720737981, 5459867166, 17369553427, 55391735455, 177040109419, 567019562429, 1819536774089
Offset: 0
Keywords
Examples
a(4) = 13 because of the 14 Dyck 4-paths only UUDDUUDD contains DDUU.
Links
- Robert Israel, Table of n, a(n) for n = 0..1709
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6.
- Paul Barry, Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials, arXiv:1910.00875 [math.CO], 2019.
- Lu, Qing Lin Skew Motzkin paths Acta Math. Sin., Engl. Ser. 33, No. 5, 657-667 (2017) sequence s_n
- T. Mansour, Restricted 1-3-2 permutations and generalized patterns, arXiv:math/0110039 [math.CO], 2001.
- T. Mansour, Restricted 1-3-2 permutations and generalized patterns, Annals of Combin., 6 (2002), 65-76. (Example 2.10.)
- L. Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012. - From _N. J. A. Sloane_, Jan 03 2013
- A. Sapounakis, I. Tasoulas and P. Tsikouras, On the Dominance Partial Ordering of Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.5.
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
Programs
-
Maple
F:= gfun:-rectoproc({(n+2)*a(n) +(n+3)*a(n-1) +2*(-9*n+4)*a(n-2) +10*(n-2)*a(n-3) +(n-4)*a(n-4) +5*(n-5)*a(n-5)=0, seq(a(n)=[1,1,2,5,13][n+1],n=0..4)},a(n),remember): map(F, [$0..30]); # Robert Israel, Jun 29 2015
-
Mathematica
CoefficientList[ Series[(1 - 2 x + x^2 - Sqrt[1 - 4 x + 2 x^2 + x^4])/(2 x^2), {x, 0, 27}], x] (* Robert G. Wilson v, Mar 25 2011 *)
-
PARI
{a(n) = polcoeff((1 - 2*x + x^2 - sqrt(1 - 4*x + 2*x^2 + x^4 + x^3 * O(x^n))) / 2, n+2)}
-
PARI
a(n)=1+sum(k=0,n,sum(i=0,k,binomial(n-1,k)*binomial(2*i+2,i)*binomial(i+2,k-2*i-1)/(i+1))) \\ Thomas Baruchel, Jan 19 2015
Formula
G.f. A(x) satisfies the equation 0 = 1 - x - (1 - x)^2 * A(x) + (x * A(x))^2.
G.f.: (1 - 2*x + x^2 - sqrt(1 - 4*x + 2*x^2 + x^4)) /(2 * x^2).
a(n+2) - 2*a(n+1) + a(n) = a(0)*a(n) + a(1)*a(n-1) + ... + a(n)*a(0).
G.f.: (1/(1-x))*c(x^2/(1-x)^3), c(x) the g.f. of A000108; a(n)=sum{k=0..floor(n/2), C(n+k,3k)*A000108(k)}. - Paul Barry, May 31 2006
Conjecture: (n+2)*a(n) +(n+3)*a(n-1) +2*(-9*n+4)*a(n-2) +10*(n-2)*a(n-3) +(n-4)*a(n-4) +5*(n-5)*a(n-5)=0. - R. J. Mathar, Nov 26 2012
G.f. satisfies (10*x^3-28*x^2+4*x+2)*A(x) + (5*x^6+x^5+10*x^4-18*x^3+x^2+x)*A'(x) = 5*x^4+x^3-15*x^2+7*x+2. This confirms R. J. Mathar's recurrence equation. - Robert Israel, Jun 29 2015
G.f.: 1 - G(0), where G(k)= 1 - 1/(1 - x/(1 - x/(1 - x/(1 - x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jul 12 2013
G.f.: 1/G(0) where G(k) = 1 - q/(1 - q - q^2 / G(k+1) ); (continued fraction). - Joerg Arndt, Feb 27 2014
From Thomas Baruchel, Jan 19 2015: (Start)
a(n) = 1+Sum_{k=0..n} Sum_{i=0..k} C(n-1,k)*C(2i+2,i)*C(i+2,k-2i-1)/(i+1).
a(n) = Sum_{k=0..n} C(2k,k)*C(n+k,3k)/(k+1).
Sum_{k=0..n} a(k+1)*A108626(n-k) = Sum_{k=0..n} Sum_{i=0..k} binomial(n-k+1,i-1)*binomial(n-k+1,i)*binomial(n-i+1,k-i). (End)
Extensions
Name corrected by David Scambler, Mar 28 2011
Comments